Date: March 4, 2011

RE: City of Duluth Bld #10-4401
 (New Passenger Terminal Bld Package 2A)

 Addendum No. 5

TO: Prospective Bidders

This Addendum forms a part of the Contract Documents and modifies the original Bidding Documents dated February 3, 2011. Acknowledge receipt of this Addendum in the space provided on the Bid Form. Failure to do so may subject the Bidder to disqualification.

1.0 PROJECT MANUAL

1.1 Invitation to Bid:

No Changes.

1.2 Bid Form:

No Changes.

1.3 Technical Specifications:

Section 10651 – Operable Panel Partitions:
- Revise Article 2.8, Paragraph A to read:
 Storage Pocket Door 117B and 219C: Full height at end of partition runs to
 conceal stacked partition of similar construction, thickness, and acoustical
 qualities as partition, complete with operating hardware. Doors to be framed with
 stainless steel protective edge trim with a 3/8" exposed face dimension, and
 faced with flush wood panels matching adjacent wall panels to be supplied by
 others. Hinges in finish to match other exposed hardware.
 1. Rim Lock: Prep door to receive key-operated lock cylinder provided by
 hardware supplier, to secure storage pocket door in closed position.

Section 15550 - Heating, Ventilation & Air Conditioning Piping
- Hot water boiler shall be limited to full condensing time per the
 performance criteria scheduled on M402.
- Bruner control communication shall be open protocol Modbus, LONworks
 or BACnet.

Section 15785 – Ceiling Mounted Air-Conditioning Units
- Specification is added in this Addendum regarding requirements of
 computer room units as scheduled on M403.

Section 15950 – HVAC Instrumentation and Controls
- Part 2.6.B.5 shall permit 2-way valves for differential pressure control as
 indicated on the plans.
- Part 2.6.D.2 shall be deleted. There is no fuel oil system in the project.
- Part 2.8.B.12 shall be revised in indicate the following:
 No single modulating control valve shall be larger than 2-1/2". Whenever the flow rate is such as to require a valve larger than 2-1/2", then two valves in parallel shall be used, with no one larger than 2-1/2". The valves shall operate sequentially. High performance butterfly valve valves with proportional control to 10% of full rated flow shall be acceptable as a single valve.
- Part 3.3.A.6 shall be revised to delete the requirements for field device and wiring for fuel oil systems.
- Part 3.3.A.7 shall be revised to indicate the following:
 "All systems requiring interconnecting control wiring as specified herein, shall have hardwired interlocks and shall not rely on the BMS to operate (e.g. return air smoke detector). Interconnecting wiring shall be run in conduits separate from the BMS associated wiring."

2.0 DRAWINGS

Sheet M401: Air Handling Unit Schedule is revised per the attached MSK-1.

3.0 OTHER:

3.1 Responses to Bidder Questions:

See attached Appendix A.1 for Responses to Bidder Questions.

END OF ADDENDUM NO. 5
PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Ceiling mounted air conditioning units.

1.2 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this section.

B. This section is part of each Division 15 Section

C. Division 16 - Electrical

1.3 REFERENCES

B. AMCA 210 - Laboratory Methods of Testing Fans for Rating Purposes.

C. AMCA 300 - Test Code for Sound Rating Air Moving Devices.

E. AMCA 500 - Test Methods for Louver, Dampers, and Shutters.

F. ANSI/AFBMA 9 - Load Ratings and Fatigue Life for Ball Bearings.

G. ANSI/UL 900 - Test Performance of Air Filter Units.

I. NAPA 90A - Installation of Air Conditioning and Ventilation Systems.

J. SMACNA - Duct Construction Standards.

1.4 SUBMITTALS

A. Submit the following according to the Conditions of the Contract and as specified in Division 01 Section "Submittals" and Division 23.
B. Shop drawings shall indicate assembly, unit dimensions, weight loading, required clearances for maintenance, coil removals, etc., construction details, and field connection details.

C. Product data shall indicate capacities, ratings, fan performance, coil performance data, sound data, motor electrical characteristics, and gauges and finishes of materials.

D. Provide fan curves with specified operating point clearly plotted.

E. Submit product data of filter media, filter performance data, filter assembly, and filter frames.

F. Submit electrical requirements for power supply wiring including wiring diagrams for interlock and control wiring, clearly indicating factory-installed and field-installed wiring.

G. Submit manufacturer's installation instructions.

1.5 QUALITY ASSURANCE

B. Sound Ratings: ARI 410.

C. Fabrication: Conform to ARI 430.

D. Filter Media: ANSI/UL 900 listed, Class I or Class II, approved by local authorities.

E. Air Coils: Certify capacities, pressure drops, and selection procedures in accordance with ARI 410.

F. Air Handling Units: Product of manufacturer regularly engaged in production of components who issues complete catalog data on total product.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Store and protect products under provisions of Division 01. Leave factory shipping covers in place until installation.

B. Store in clean dry place and protect from weather and construction traffic. Handle carefully to avoid damage to components, enclosures and finish.

C. Comply with manufacturer's installation instructions for rigging, unloading and transporting units.
1.7 OPERATION AND MAINTENANCE DATA

A. Include start-up instructions, operations and maintenance data.

B. Start-up: Manufacturer shall furnish factory representative to supervise erection, testing and starting of the machines, including owner instruction.

C. Submit operation and maintenance data under provisions of Division 01. Include instructions for lubrication, filter replacement, motor and drive replacement, spare parts lists, and wiring diagrams.

1.8 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing and design of absorption products with minimum 10 years experience.

B. Equipment Supplier: Company must submit local organizational chart detailing sales, service, and parts capabilities.

C. Local service should be located within 100 miles of job site.

1.9 WARRANTY

A. Manufacturer shall provide a full parts and labor warranty for a period of two (2) years from date of acceptance by the owner. Warranty on motors and compressors shall be for a period of five (5) years from the date of acceptance by the Owner. Manufacturer must maintain a local full time parts and service company capable of responding to service needs within 24 hours.

1.10 ENVIRONMENTAL REQUIREMENTS

A. Do not operate units for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings lubricated, and fan has been test run under observation.

1.11 EXTRA STOCK

A. Provide one set of filters as specified under another Section.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. SATS

B. Liebert
2.2 GENERAL DESCRIPTION

A. Unit shall be a self-contained, factory fabricated, ceiling mounted air cooled as specified on the drawings, which includes DX cooling coil, air cooled condenser, filters supply fan, motor and controls. The units shall be MET Laboratory listed and labeled in accordance with UL. The units shall be MET Laboratory listed and labeled in accordance with UL.

B. Factory fabricate and test air handling units of sizes, capacities, and configuration as indicated and specified.

C. All internal components specified in the air handling unit schedule shall be factory furnished and installed. Unit(s) shall be completely factory assembled.

D. Units shall ship in one (1) piece. Shipping splits can be provided as required for installation. Lifting lugs will be supplied on each side of the split to facilitate rigging and joining of segments.

E. Units with shipping splits shall be provided with "male" and "female" connection pieces for easy field assembly. Units requiring field installed gasketing must be assembled under supervision by factory trained and employed personnel from the air unit manufacturer.

F. The units shall be configured for a draw-thru pattern to provide uniform air distribution over the cooling coil.

2.3 CASING

A. Casing - The unit shall be constructed of aluminum.

B. All segments shall be double wall, formed and reinforced to provide a rigid assembly.

C. Access - The unit shall be fully accessible through removable side access panels.

D. Insulation: Entire unit interior to be insulated with moisture proof, fire resistant, two inch (2") thick 2 lb. High density neoprene coated glass fiber blanket, cemented to internal surfaces, conforming with NAPA Standards for duct lining, plus an inner solid lining of aluminum to protect the acoustic liner from damage.
E. Unit Finish: The exterior of the unit shall be completely cleaned prior to application of finished coats. A prime coat of epoxy chromate shall be applied to a minimum thickness 1.5 mils. A finish coat of acrylic polyurethane shall then be applied to a minimum thickness of 2.5 mils, manufacturers standard color.

F. When tested in accordance with ASTM B-117 the finished unit shall withstand 125 hour salt spray solution (5%) without any sign of red rust.

2.4 FANS

A. Fan to be belt driven with double width, double inlet housing and forward curved blades. Fan shall be furnished to meet the performance requirements set forth in the schedule.

B. Fan to be belt driven and selected at or near efficiency peak. (Submit fan curves.)

C. Fan shaft to be properly sized and protectively coated width lubricating oil. Fan shafts shall be solid and properly designed so that fan shaft does not pass through first critical speed as unit comes up to rated RPM. Fans shall be statically and dynamically tested as an assembly at the required RPM to meet design specifications. Key fan wheels to fan shaft to prevent slipping.

1. Shaft - Shall be solid or tubular steel and shall not pass through the first critical speed as unit comes up to rated rpm. Fan wheels to be secured with slotted keyways on solid shafts and with taper lock hubs on tubular steel shafts. Rust preventive coating to be provided.

2. Bearings - Self-aligning, permanently lubricated, ball type. Internal bearings, where used, shall be provided with extended fittings mounted externally at drive side of unit. Minimum 200,000 hours average life, as defined by AFBMA.

3. Drive - Adjustable, minimum of two grooves furnished on all motor sizes. Drive sized for 1.5 x motor H.P. Belt guard to meet OSHA requirements and to have access opening for RPM readings. Provide belt guard (whether motor is inside or outside unit).

4. Install flexible canvas ducts between fan and casings to ensure complete isolation. Flexible canvas ducts shall comply with NAPA 90A.

5. The entire unit shall be externally isolated from the structure, supply duct work and piping by contractor in order to avoid transmission of noise and vibration through the ductwork.

6. Inlet Screens: Required for all fans, constructed for easy removal, of heavy wire mesh.

7. Drain Connections: To be provided at bottom.

CEILING MOUNTED AIR-CONDITIONING UNITS
Bid Package 2A – Addendum 5
15785 - 5
8. Replacement of Sheaves: Provide additional adjustable or fixed sheaves at no extra cost, as required for balancing.

2.5 ELECTRICAL CHARACTERISTICS AND COMPONENTS

A. The system shall require only single point supply power connection.

1. Electric Motors: For electric motors, see detailed specifications elsewhere. Scheduled brake horsepower shall not be exceeded. All motors shall be high efficiency.

B. The motor shall be mounted on the same isolation base as the fan. The motor shall be on a slide base to permit adjustment of belt tension.

2.6 COILS

A. All coils shall be furnished and installed to meet the performance requirements set forth in the schedule and as specified under another section of this work.

B. All coils shall be factory installed on tracks for easy removal from the unit. Units that require disassembly of the unit for coil removal are not acceptable. Install coils such that headers and return bends are enclosed by unit casings.

C. Coil casing to be constructed of galvanized steel.

2.7 FILTERS

A. Provide filters as part of unit. All filters shall be furnished and installed to meet the performance requirements set forth in the schedule and as specified under another section of this work.

1. The filter frames shall be constructed of galvanized steel and be built as an integral part of the unit. All filter segments shall be serviceable with access doors.

B. All filters shall be installed on tracks for easy removal from the unit.

C. A magnahelic, differential pressure gage shall be factory installed and flush mounted on drive side to measure the pressure drop across the filters.

2.8 APPURTENANCES

A. No water carry-over from cooling coils into air stream accepted. Eliminators shall be provided where required by unit manufacturer. Pressure drop across eliminator shall be maximum 0.25" W.G. at 500 FPM, coil face velocity.
2.9 DRAIN PAN

A. All cooling coils and fan section to be provided with 316 stainless steel drain pan. Pan to be installed under coil and extending a minimum of 18" past end of coil. Pan to be drained with piping leading to floor drain.

1. Coils installed in more than one section high to have intermediate pans. Each pan to be individually drained with piping to outlet pipe leading to floor drain.

2. Insulation - ½" closed cell plastic, coated with an asphaltum binder cemented to inside surface with waterproof adhesive.

3. Multiple coils in air handling units to be provided with built in troughs.

4. Provide water level detection device conforming to UL 508. Device shall be installed in equipment supplied drain pan, located at a point higher than the primary drain line connection and below the overflow rim of such pan. This device shall shut off the equipment served in the event that the primary drain becomes restricted and alarm BMS. Externally installed devices and devices installed in drain line shall not be permitted.

2.10 COMPRESSORS

A. Compressors shall be high efficiency, high reliability, and low sound scroll compressors.

1. The compressors shall be complete with charging and service ports, internal vibration isolation, internal thermal overload protection, internal pressure relief valve, internal gas vibration eliminator and external vibration mounting isolation.

2.11 DX- REFRIGERATION SYSTEM

A. All refrigerant piping shall be refrigerant grade tubing. Each refrigerant circuit shall include, as a minimum: refrigerant drier/strainer, sight glass with moisture detector, thermal expansion valve with rapid bleed port feature and external equalizer, evaporator coil, compressor, high pressure switch with manual reset and a low pressure switch with automatic reset.

2.12 DAMPERS

A. All Dampers shall be furnished to meet the performance requirements set forth in the schedule and as specified under another section of this work. All Dampers shall be of low leak design.
2.13 CONTROLS

A. Provide a microprocessor based control system, as manufactured by the AC unit manufacturer.

1. Provide a remote keypad to be mounted as per the direction of the Owner. Provide a room mounted thermostat wired to the control system. The keypad shall have an internal switch to lockout the keypad.

2. The control system shall interface with the BMS.

3. The controller shall include the following:

 a. Temperature setpoint adjustment
 b. Current Unit Status
 c. Alarm indications - High temperature, humidity, Low temperature, humidity
 d. Condensate pan full
 e. Dirty Filter

2.14 FIRESTAT

A. Provide a factory mounted firestat, as specified under another section of this work.

2.15 CONDENSATE PUMP

A. Provide a factory mounted condensate pump for automatic removal of condensate water. In addition to condensate pan overflow safety switch, the pump shall include an internal overflow safety switch which will shut the unit down in the event of condensate overflow (pre-wired in factory) and send alarm to BMS. Piping to drain as shown on the drawings will be by this contractor.

B. In addition, provide a solid state high-level to be factory installed and wired in the primary condensate drain pan located under within the unit. The detector will shut the unit down in the event of the detection of high liquid level in the drain pan.

2.16 REMOTE AIR COOLED CONDENSER

A. The remote air cooled condenser shall be the low profile, slow speed, multiple direct drive, propeller fan type, equipped with rain shields and permanently sealed ball bearings. Provide a factory mounted disconnect switch.

B. The condenser cabinet shall house the condenser coil, propeller fans, direct driven by individual fan motors, fan guards, mounting legs and fan motor(s) and NEMA 3R condenser motor control/enabling box. The compressor(s) shall be
located with the evaporator section.

C. The condenser shall be arranged for horizontal air discharge.

D. The condenser shall be sized to provide the total heat of rejection of the system at a 95°F DB ambient temperature for the corresponding evaporator.

E. Coil

1. The condenser coil shall be constructed on copper tubes on a staggered tube pattern. Tubes shall be expanded into continuous, rippled aluminum fins. The fins shall have full-depth fin collars completely covering the copper tube.

2. Copper tubes shall be connected to heavy wall type L headers, inlet coil connector tubes shall pass through relieved holes in the tube sheet, for maximum resistance to piping strain and vibration.

3. Coils shall be factory leak-tested at 400 PSIG (minimum); dehydrated, evacuated and sealed.

F. Casing

1. The condenser casing shall be constructed of bright aluminum sheet. Casing shall be divided into individual fan sections by full width baffles.

2. Structural support members, including coil support frame, motor and drive support shall be galvanized steel for strength and corrosion resistance. Aluminum legs with rigging holes shall be provided for hoisting the unit into position.

G. Fans

1. Fans shall have zinc-plated steel or aluminum blades. Fan shall be secured to fan shaft by means of a heavy-duty keyed hub and dual set screws. Fan Diameter shall be 30" or less. Fans shall be factory balanced and run before shipment.

2. Fan guards shall be heavy gauge, close meshed, steel wire, with corrosion resistant finish.

H. Fan Motors

1. Fan motors shall be 12-pole, 570 RPM and shall include built-in overload protection. Motors shall be rigidly mounted on die-formed galvanized steel supports.

I. Electrical Control
1. All electrical connections (and electrical low ambient controls) shall be provided in a weatherproof enclosure. The enclosure shall be integral with the condenser for pleasing appearance as well as functional protection.

2. Main electrical control provides magnetic contactor and control voltage for remote starting of the condenser.

J. Fan speed control (Remote air cooled condenser)

1. The winter control system for the air cooled condenser shall be Fan Speed Control. The variable speed motor shall operate from 0 to 230 volts single phase, 10 to 1050 rpm. It shall be designed with ball bearings, permanent lubrication, internal overload protection, 40°C rise at full speed, 65°F rise at 10 RPM.

2. The control system shall be complete with transducers, thermostats, and electrical control circuit, factory pre-packaged in the integral condenser control box. The transducer shall automatically sense the highest head pressure of either operating compressor and control box. The transducer shall automatically sense the highest head pressure of either operating compressor and control the variable speed fan on the air cooled condenser to properly maintain the head pressure. The fan speed control system shall provide positive start-up and operation in ambient temperature as low as -20°F (minus 28.9°C).

K. Hot gas reheat

1. The complete hot gas reheat system shall include a copper tube, aluminum fin coil, three-way solenoid valve, refrigeration check valve, and one stage of electric reheat.

2.17 SMOKE DETECTOR

A. Provide a smoke detector which is mounted in the unit with the sensing element in the return air flow. Upon activation, the smoke detector will immediately shut down the entire unit and activate the unit alarm system. In addition, a single pole, double throw, non-powered auxiliary contact is to be provided for a remote alarm.

2.18 INDIVIDUAL TRANSFORMERS AND CONTACTORS

A. Provide individual transformers and contactors for each major component within unit.

2.19 PERFORMANCE

A. Performance: Noted on schedules, to be rated as a completely assembled unit.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install in accordance with manufacturer's instructions.
B. Install in conformance with ARI 435.
C. Isolate fan segment with flexible duct connections.
D. Provide for connection to electrical service.
E. Install units on vibration isolation.
F. Provide connections to refrigerant piping.

END OF SECTION 15785
FAN DATA

<table>
<thead>
<tr>
<th>UNIT NO.</th>
<th>SERVICE</th>
<th>LOCATION</th>
<th>CFM</th>
<th>ES(^2) (IN W.G.)</th>
<th>RPM</th>
<th>FAN TYPE</th>
<th>MOTOR DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHU-1</td>
<td>AIRSIDE</td>
<td>WEST</td>
<td>10,000</td>
<td>2.3</td>
<td>1336</td>
<td>PLUG</td>
<td>1200</td>
</tr>
<tr>
<td>AHU-2</td>
<td>CORE</td>
<td></td>
<td>38,000</td>
<td>2.6</td>
<td>760</td>
<td>PLUG</td>
<td>1600</td>
</tr>
<tr>
<td>AHU-3</td>
<td>LANDSIDE</td>
<td>WEST</td>
<td>37,000</td>
<td>2.6</td>
<td>1304</td>
<td>PLUG</td>
<td>1200</td>
</tr>
<tr>
<td>AHU-4</td>
<td>LANDSIDE</td>
<td>EAST</td>
<td>17,000</td>
<td>2.6</td>
<td>1304</td>
<td>PLUG</td>
<td>1200</td>
</tr>
<tr>
<td>AHU-5</td>
<td>AIRSIDE</td>
<td>EAST</td>
<td>10,000</td>
<td>2.3</td>
<td>1336</td>
<td>PLUG</td>
<td>1200</td>
</tr>
</tbody>
</table>

OUTSIDE AIR

<table>
<thead>
<tr>
<th>TEMP (°F)</th>
<th>AIR TEMP (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFM</td>
<td></td>
</tr>
<tr>
<td>DB</td>
<td></td>
</tr>
<tr>
<td>DB</td>
<td></td>
</tr>
<tr>
<td>WB</td>
<td></td>
</tr>
<tr>
<td>DB</td>
<td></td>
</tr>
<tr>
<td>DB</td>
<td></td>
</tr>
</tbody>
</table>

COOLING Coil DATA

<table>
<thead>
<tr>
<th>TOTAL MBH</th>
<th>SENS. MBH</th>
<th>WATER TEMP. (°F)</th>
<th>WORK PRESS (PSIG)</th>
<th>FACE AREA (SF)</th>
<th>MAX P.D.</th>
<th>VOLTS/PH/H</th>
<th>MANUF & MODEL NO.</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE-HEAT</td>
<td>FINAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PREHEAT COIL DATA

<table>
<thead>
<tr>
<th>AIR TEMP (°F)</th>
<th>TOTAL MBH</th>
<th>GPM</th>
<th>WATER TEMP. (°F)</th>
<th>WORK PRESS (PSIG)</th>
<th>FACE AREA (SF)</th>
<th>MAX P.D.</th>
<th>PRE-FILTER</th>
<th>FINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENT</td>
<td>LVS</td>
<td>ENT</td>
<td>LVS</td>
<td>ENT</td>
<td>LVS</td>
<td>ENT</td>
<td>LVS</td>
<td>TYPE</td>
</tr>
<tr>
<td>22.5</td>
<td>100.0</td>
<td>27.9</td>
<td>837</td>
<td>100.0</td>
<td>120.0</td>
<td>7.2</td>
<td>216</td>
<td>PLEATED MERV-8</td>
</tr>
<tr>
<td>31.7</td>
<td>62.0</td>
<td>22.7</td>
<td>660</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>PLEATED MERV-8</td>
</tr>
<tr>
<td>44.5</td>
<td>100.0</td>
<td>34.0</td>
<td>1,019</td>
<td>100.0</td>
<td>120.0</td>
<td>12.2</td>
<td>167</td>
<td>PLEATED MERV-8</td>
</tr>
<tr>
<td>38.4</td>
<td>100.0</td>
<td>37.7</td>
<td>1,132</td>
<td>100.0</td>
<td>120.0</td>
<td>12.2</td>
<td>167</td>
<td>PLEATED MERV-8</td>
</tr>
<tr>
<td>22.5</td>
<td>100.0</td>
<td>27.9</td>
<td>837</td>
<td>100.0</td>
<td>120.0</td>
<td>7.2</td>
<td>216</td>
<td>PLEATED MERV-8</td>
</tr>
</tbody>
</table>

NOTE:

Provide separate connection and control valve per detail for preheat and reheat coils at each AHU. Branch pipe sizes to coils for AHU-1&5 shall be 2" (preheat) and 1-1/4" (reheat). Branch pipe sizes to coils for AHU-3&5 shall be 2-1/2" (preheat) and 1-1/2" (reheat).
<table>
<thead>
<tr>
<th>Item</th>
<th>Drwg. or Spec. Sect. No.</th>
<th>Bidder Questions</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>Condensing boilers as PK Machs as in schedules with glycol in the loop and pH monitoring for the aluminum heat exchangers. Fire tube boilers such as Cleaver Brooks are referenced in the specifications. What is the correct boiler type and the correct sequence?</td>
<td>Condensing boilers are correct.</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>What communications protocol is being provided with the burner control units?</td>
<td>Assume Modbus.</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Valve for the boiler return line shows 2-way control valve on plan M301, but specification calls for a 3-way bypass valve. What type should this be? If condensing boilers are used, is this valve still required?</td>
<td>2-way valve.</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Where are the generators and associated components? What sizes are the generator room dampers? Does BMS have communication interface to the generators? Is there an SCR catalyst system for exhaust cleansing? If so, does BMS contractor have scope associated with that?</td>
<td>The generator is an exterior packaged unit on site (roughly 350 ft to East of building). Only status and general alarm of generator is required by BMS.</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>How many bulk heads for fuel oil piping penetrations to determine number of leak detectors/leak detection zones needed?</td>
<td>This is no longer applicable</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Are there fuel oil piping plans? Specification calls for BMS built fuel oil monitoring system, but without quantities of tanks, fuel oil plans, and specification on this system how should we proceed?</td>
<td>This is no longer applicable</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>Does the air cooled chiller require a refrigerant monitoring system with purge fan for the air cooled chillers to be provided and installed by BMS contractor?</td>
<td>There will be no fuel oil in the building. Boilers are natural gas fired.</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>Specifications require any chilled or heating water control valve over 2.5 inches to be re-piped as 2 valves. Does this also apply to the 6 inch chiller control valves?</td>
<td>The air-cooled chillers do not require refrigerant monitoring/purge fan.</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>Can extension be arranged for bidding this project so that accurate quotes can be attained for the affected trades? For example fuel oil components, BAS components and electrical installation will be drastically affected by the clarification of these items.</td>
<td>The requirement is for modulating control valves only. High performance butterfly valves are acceptable.</td>
</tr>
</tbody>
</table>
BID PACKAGE 1
DOA PROJ. NO. H1097-08

| 10. | Can extension be arranged for bidding this project so that accurate quotes can be attained for the affected trades? For example fuel oil components, BAS components and electrical installation will be drastically affected by the clarification of these items. | With responses above, we do not believe an extension is needed for trade coordination. |

Pro-tec Design – February 23, 2011

| 11. | 13700 | The work scope 1.1.B.11 states that it is to include connection to the existing perimeter gates as indicated on drawings. There are other areas in the specs that also give direction on what is required for the vehicle gates, and there is a drawing for a Typical vehicle gate configuration, ET504 #12. I don’t see any drawings that identify the existing vehicle gates, and they are not included in the Security Riser diagram or Access Point Schedule. Where is the bidder supposed to get that information, and how do we know what is available for communications? They need to be specifically identified so everyone bids on the same thing, or else omitted from this package. If omitted, the statement in Section 1.1.B.11 needs to be removed, along with the other references to the vehicle gates. | The referenced Section 13700 was replaced by Section 13700A in Addendum 4. There is no work under Section 13700A associated with the gates in this Bid Package 2A. |

Minuti-Ogle Co. – February 28, 2011

| 12. | A 802 | C.G-4 Waterproof gyp bd – painted? There is no such thing as waterproof gyp bd. What product do they want? | CLG-4 is specified in 09250 2.2G and should be moisture and mold resistant type-X. |

| 13. | | What is the ceiling in room 245? (Gyp bd per reflected cgl plan or cgl -3 (act) per finish schedule).? | Ceiling in room 245 is gyp. bd. for security reasons. |

| 14. | | Sheet LS111 Part of the walls shown between rooms 135, 134, 183 and 184 are shown as 1 hour. Is this correct? | Correct, these are tenant separations and only occur between different tenants. The fire rating is only required to extend to the underside of the ceiling. |

| 15. | 09250 | Section 09250 2.3 gives 3 options for tile backing panels. 3.4 c. calls for cementious backer board behind tile. What product do they want for a tile backer in the toilet rooms? | Cementitious backer board. (framed partitions only) |

| 16. | | Wall type 12 is shaftwall. In some cases both sides are exposed (stair 191, stair 190, stair 291, stair 290, stair 391, stair 390). Please review and advise. | Shaftwall provides the correct fire rating at the desired wall thickness and the AHJ requires that the walls be continuous. |
Harbor City Masonry – March 1, 2011

| 17. | The majority of the CMU walls in this bid package are Type 4 and 4A, these walls are supposed to be constructed to 4" above the ceilings. There are areas of the building that do not have ceilings in the adjoining rooms to the toilet rooms that these CMU walls mainly are constructed around, such as Janitor Closets and Electrical Rooms, do the CMU walls get constructed to the structure above when they separate the Toilets from a room without a ceiling? | Yes. |

Northern Door & Hardware, Inc. – March 2, 2011

| 18. Addm 2 | Re: Addn 2 / alt 15. the addn doesn’t tell us what is going to be supplied on these doors. Are the locks that would be supplied battery powered and completely stand alone? I.e., do we still need power transfers, power supplies, electric strikes etc. | If alternate is taken, the locks would be battery powered and stand alone. |

Hufcor Inc. – February 23, 2011

| 19. | See Secs call for pocket doors 117B and 219C to be same material as the operable partition - Plastic laminate. Plans call for the pocket doors to match the wall’s wood finish per Elevations. What finish do they require? If the finish is wood veneer, what type of veneer do they require? Who supplies it? Who installs it? Is there reveals which must be matched? | See revision to Section 10661 in this addendum. Doors will be faced with flush wood panels to be supplied by another contractor in a future bid package and installed by the operable partition contractor. |

| 20. | During the design phase, it was determined that door #117 was to be notched. I cannot find any notching indicated on the drawings. Does door #117 need to be notched? | See Detail 4/A 405, as referenced on A 110. |

Mahin-Walz, Inc. – February 24, 2011

| 21. | Room 117 & 219: What is finish on the electrically operated partitions? Is finish to be full height and width of panels, both sides of partitions? Assume same finish on pocket doors? | These operable partitions shall be faced with plastic laminate, full height and width of panels on both sides. See Item 19 above re: pocket doors. |

| 22. | What stc is needed for these partitions? | None. |

Eaton Corporation – March 4, 2011

| 23. | On the lighting control panels is the DALI gateway going to be used or not. We have our Pow R Command system that would be able to do everything else required but we do not have DALI. Will it be required. | No, Dal is not required. |

| 24. | I was reviewing the switchboard spec and it specifies metering. I do not however see any type of metering on the drawing E300 or the panel schedule. Is metering required on the switchboards GDP-1 or SB-3. | No, metering is not required for "GDP-1" and "SB-3" - the switchgear feeding this equipment is metered. |

Note: Outstanding questions regarding Baggage Handling Systems will be addressed in a future addendum.