ELECTRICAL SPECIFICATION FOR

CITY OF DULUTH
MAIN PUBLIC LIBRARY
MECHANICAL SYSTEM
AND
BUILDING ENVELOPE UPDATES

JULY 15, 2011

I hereby certify that this specification was prepared by me or under my direct supervision and that I am duly licensed Professional Engineer under the laws of the State of Minnesota.

[Signature]
Neal K. Wunderlich
Registration # 14878
DIVISION 26 – ELECTRICAL

260100 GENERAL PROVISIONS
260500 COMMON WORK RESULTS FOR ELECTRICAL
260519 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
260526 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
260533 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS
260553 IDENTIFICATION FOR ELECTRICAL SYSTEMS
262813 FUSES
262923 VARIABLE FREQUENCY CONTROLLERS
265800 MOTOR CONNECTIONS/ STARTING EQUIPMENT
SECTION 260100 – GENERAL PROVISIONS

PART 1 - GENERAL

1.1 SCOPE

A. The General Conditions, Supplemental General Conditions, and Special Conditions apply to all work in this Division.

1. This Contractor shall furnish all labor, equipment, materials, tools, methods, operations, permits, etc. required or necessary for or incidental to the installation of Systems to provide complete lighting, power, and auxiliary systems in accordance with these Specifications and/or the accompanying Drawings.

2. Electrical work shall be complete from the location designated by the electric utility company as the point of electrical service connection to the final connection of motors, light fixtures, devices, apparatus, and all other miscellaneous loads as shown on the Drawings and/or specified herein.

3. Electrical work for systems shall include all labor and material, resulting upon completion, in functioning systems in compliance with performance requirements specified. The omission of express reference to any parts necessary for or reasonably incidental to a complete installation shall not be construed as a release from furnishing such parts.

4. Wiring as specified or shown on the Drawings is for a complete and workable system. Any deviations from the wiring shown due to a particular manufacturer's requirements shall be made at no additional cost to the Owner.

1.2 DRAWINGS AND COORDINATION

A. All drawings are diagrammatic and are not intended to indicate exact installation details or locations. The Contractor shall refer to the Architectural, Structural, and Mechanical Drawings for dimensions, suspended ceilings, location of equipment, etc. Field measurements, however, take precedence over dimensioned drawings. Discrepancies between different plans or between drawings and specification, or regulations and codes governing the installation shall be brought to the attention of the Engineer in writing before the date of bid opening. If discrepancies are not reported, the Contractor shall bid the greater quantity or better quality, and appropriate adjustments will be made after contract award. Contractor shall be responsible to field measure and confirm mounting heights and location of electrical equipment with respect drawings. Use actual building dimensions.
1.3 CODES AND STANDARDS

A. All work shall meet all requirements of the latest edition of the National Electrical Code (NFPA 70) and all national, state, and local regulations that may apply. Standards of the following associations or organizations shall be followed and applied where applicable as minimum requirements:

UL Underwriters Laboratories
IBC International Building Code
IEEE Institute of Electrical and Electronic Engineering
NEMA National Electrical Manufacturers Association
NFPA National Fire Protection Association
NBFU National Board of Fire Underwriters
ASTM American Society of Testing Materials
ADA Americans with Disabilities Act

1. Where requirements indicated on the Drawings or specified herein are in excess of the applicable codes and standards, the requirements of the Drawings and Specifications shall govern.

1.4 SHOP DRAWINGS

A. Submit seven sets of shop drawings, properly labeled to contractor, project, subject, manufacturers names, etc. with catalog numbers, features, dimensions, etc. clearly indicated and pointed out. Manufacturer not specified or not given prior approval will not be considered.

1. Shop drawings are required on all major equipment items. Shop drawings are required for:

 a. Lighting Fixtures.
 b. Starters.
 c. Raceway System.
 d. Wiring Devices.

2. Time of shop drawing submittals:

 a. Shall occur as soon as practical after award of Contract (no more than 15 days).
 b. Engineer requires minimum of seven working days for review.
 c. Special processing to meet project conditions shall be noted.
 d. Shop drawings approval must be achieved before fabrication of equipment starts.
3. Contractor shall:

a. Review all shop drawings prior to submittal of Engineer.

b. Submit sufficient number to provide two sets for Owner, one set for Architect and one set for Engineer. Contractor to bind Owner's sets along with maintenance/operating instructions and deliver to Engineer at project completion.

c. Identify project's name, project Contractor, and Specification section for each shop drawing.

d. Sign and date each shop drawing submitted.

 1) Signature to represent the Contractor's review of shop drawings such that they comply with Contract Documents.

 2) Shop drawings without Contractor's signature will be returned unchecked.

e. All drawings shall be submitted in a neatly organized and bound format. Submittals in leaf or disorganized format will be rejected.

f. Should the Contractor purchase and or erect equipment before review of Drawings by the Engineers, any expense incurred to alter or replace the equipment to meet the Specifications shall be borne by the Contractor.

1.5 PRODUCT SPECIFICATION

A. Catalog numbers used to identify specific products shall not be construed as product ordering or purchase order numbers. Contractor shall provide all specified products to comply with verbal description and catalog numbers where indicated. Notify Engineer of any discrepancies.

1.6 SUBSTITUTIONS OF MATERIAL AND EQUIPMENT

A. Request for substitutions shall be made in writing to the Electrical Engineer. Request must be received ten days prior to the bid date. All submittals shall be complete with all necessary product and performance data required to allow the Engineer to compare submitted products to those specified. Product submittals judged to be incomplete in the Engineer's opinion will not be considered.

B. Light fixture substitution requests for fixtures used for the purpose of illuminating outdoor building perimeters and parking lots shall be accompanied with a computer generated point-by-point photometric analysis.
1.7 TRAINING

A. Prior to final acceptance of the work, the Electrical Contractor shall provide training and orientation for systems as specified in related specification section.

1.8 OPERATING INSTRUCTIONS

A. Prior to final acceptance of the work, the Electrical Contractor shall furnish three copies of the complete portfolio covering all electrical systems and equipment furnished by him under these Specifications. The complete portfolio shall include approved shop drawings, operating and maintenance instructions, and replacement parts of such equipment listed with all material carefully segregated and identified. Information shall be printed to typewritten material, neatly folded, and bound in an 8 1/2” x 11” size expansion post binder.

1.9 AS-BUILTS

A. This Contractor shall keep a complete and up-to-date record of deviations from installation as shown on the Drawings (including addends, change orders, conduit routing, circuiting, etc.). At the completion of the work, he shall submit the as-built drawings for the project.

1.10 FEES AND PERMITS

A. All service charges, fees, permits, licenses, etc. required in connection with work in this Division shall be secured by and paid for by this Contractor.

1.11 COST BREAKDOWN

A. The Contractor shall submit a detailed cost breakdown for all work under this contract.

1. The breakdown shall be submitted ten working days after award of Contract. Breakdown shall be itemized by Specification section and shall have material and labor cost separated.

PART 2 - PRODUCTS

2.1 ELECTRICAL ENCLOSURE KEYING

A. As provided by “Best Products” matching Owner’s standard. For equipment not suitable to physically accommodate this lockset, provide a lock having a key which matches this lockset key.
1. Provide matching keying for all panelboards and gymnasium switch control enclosures.

2.2 MANUFACTURERS NAMEPLATES

A. Each major component of equipment shall have the manufacturer’s name, address, model number, and rating on a plate securely affixed in a conspicuous place. The nameplate of a distributing agent is not acceptable.

2.3 GUARANTEE

A. All material and workmanship shall be unconditionally guaranteed for a period of one year as described in the General Conditions.

PART 3 - EXECUTION

3.1 GENERAL INSTRUCTION

A. Conceal all raceway and flush mount all electrical boxes, equipment, and devices unless indicated or approved otherwise. The space above suspended ceilings or behind furred spaces is considered outside finished areas, and electrical materials installed within these areas are considered concealed. Repair building surfaces when altered by electrical work.

1. In unfinished areas, unless indicated otherwise, install raceways and devices exposed; surface mount panelboards, communications panels, and other enclosures.
2. Install exposed raceway and all other electrical equipment (e.g., lighting fixtures) with not less than 6’-6” clear to floor, unless indicated or approved otherwise and excluding raceway and equipment mounted on walls.
3. Install all electrical materials as recommended by the respective manufacturers and as required to maintain UL listings.
4. Secure equipment using fasteners suitable for the use, materials, and loads encountered. If required, submit evidence proving suitability. Do not attach electrical materials to roof decking, removable or knockout panels, or temporary walls and partitions unless indicated otherwise.
5. Ceiling Mounted Devices: The architectural reflected ceiling plans take precedence over electrical documents in event of conflict. Conduits above lay-in ceilings shall not interfere with the lift-out feature of the ceiling system.
6. Locate light fixtures in mechanical spaces after mechanical equipment is in place.
7. Coordinate with the other trades before installing equipment so that conflicts will be adjusted before installation. In general, large mechanical equipment shall be given priority. Maintain, wherever practical, a minimum separation of 3” from water and waste piping and 12” from steam piping.
8. All equipment shall be installed with ample space allowed for removal, repair, or changes to the equipment. Ready accessibility to removal parts of moving equipment which is installed or which is already in place.

9. Electrical equipment, outlet boxes, conduit, etc. shall not be attached or otherwise fastened to ductwork or other mechanical equipment except where otherwise indicated on the Drawings.

3.2 INSPECTION

A. Regularly request electrical inspection of duly authorized electrical inspectors. All charges for such inspection shall be paid for as part of this Contract.

3.3 MANUFACTURERS NAMEPLATES

A. Located so as to be visible or exposed to view in unfinished areas. Conceal in accessible locations in finished areas.

B. Use for communications systems pull and junction boxes, and pull junction boxes, and raceway installed for future use. Label inside covers in finished areas and outside covers in unfinished areas.

3.4 LABEL TAPES

A. Use for feeder conductors and control conductors. Indicate feeder numbers on feeders and terminal numbers for control conductors. Label conductors at origin and destination points and at all junction boxes where two or more feeder or control circuits are present.

3.5 HOUSEKEEPING PADS

A. Provide a concrete housekeeping pad for all floor mounted equipment. Pour the pad and score the top from front to back on 24” centers. Finish all edges with edging tool.

3.6 PROTECTION OF WORK

A. Protect all work from damage during construction. Cap or plug all conduit or keep drained. Provide tarps, barricades, temporary heaters, and auxiliary equipment required. Remove and replace any materials or equipment damaged.
3.7 PAINTING

A. All shop fabricated and factory build equipment not galvanized or protected by painting shall be cleaned and given one shop coat of red lead or zinc chromate primer before delivery to the site. Any portions of the shop coat damaged in delivery or during construction shall be recoated. All finish painting will be done in the “Painting” section of the General Work. Do not paint nameplates, labels, tags, stainless steel, or chromium plated items such as shafts, levels, handles, trim, strips, etc.

3.8 CLEANING

A. Clear away all debris and surplus material resulting from electrical work. Remove all dust and debris from interiors and exterior of electrical equipment. Clean accessible current carrying elements prior to being energized.

END OF SECTION 260100
SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Electrical equipment coordination and installation.
 2. Sleeves for raceways and cables.
 3. Sleeve seals.
 4. Common electrical installation requirements.

1.3 DEFINITIONS

B. EPDM: Ethylene-propylene-diene terpolymer rubber.
C. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 QUALITY ASSURANCE

A. Test Equipment Suitability and Calibration: Comply with NETA ATS, "Suitability of Test Equipment" and "Test Instrument Calibration."

1.6 COORDINATION

A. Coordinate arrangement, mounting, and support of electrical equipment:
1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
3. To allow right of way for piping and conduit installed at required slope.
4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 8 Section "Access Doors and Frames."

D. Coordinate electrical testing of electrical, mechanical, and architectural items, so equipment and systems that are functionally interdependent are tested to demonstrate successful interoperability.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch thickness as indicated and of length to suit application.
D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 7 Section “Through-Penetration Firestop Systems.”

2.3 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
3. Pressure Plates: Plastic. Include two for each sealing element.
4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to raceways and piping systems installed at a required slope.
3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 7 Section "Through-Penetration Firestop Systems."

C. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

D. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

E. Rectangular Sleeve Minimum Metal Thickness:
 1. For sleeve cross-section rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052 inch.
 2. For sleeve cross-section rectangle perimeter equal to, or greater than, 50 inches and 1 or more sides equal to, or greater than, 16 inches, thickness shall be 0.138 inch.

F. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

G. Cut sleeves to length for mounting flush with both surfaces of walls.

H. Extend sleeves installed in floors 2 inches above finished floor level.

I. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.

J. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

K. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Refer to Division 7 Section "Joint Sealants" for materials and installation.

L. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with Division 7 Section "Through-Penetration Firestop Systems."

M. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
N. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

O. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal underground, exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 7 Section "Through-Penetration Firestop Systems."

3.5 FIELD QUALITY CONTROL

A. Inspect installed sleeve and sleeve-seal installations and associated firestopping for damage and faulty work.

END OF SECTION 260500
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes building wires and cables and associated connectors, splices, and terminations for wiring systems rated 600 V and less.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 QUALITY ASSURANCE

A. Testing Agency Qualifications: Testing agency as defined by OSHA in 29 CFR 1910.7 or a member company of the InterNational Electrical Testing Association and that is acceptable to authorities having jurisdiction.

1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.

2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 CONDUCTORS AND CABLES

A. Manufacturers:

2. Rome Cable
3. General Cable Corporation.
4. Belden Wire & Cable Company.
5. Southwire Company.

B. Refer to Part 3 "Conductor and Insulation Applications" Article for insulation type, cable construction, and ratings.

C. Conductor Material: Copper only, complying with NEMA WC solid conductor for No. 10 AWG and smaller, stranded for No. 8 AWG and larger.

D. Conductor Insulation Types: Type THHN-THWN, XHHW.

E. VFC cable: Shielded cable assembly with required quantity of XLP insulated circuit conductors.

2.3 CONNECTORS AND SPLICES

A. Manufacturers:

1. AFC Cable Systems, Inc.
2. AMP Incorporated/Tyco International.
3. Hubbell/Anderson.
4. O-Z/Gedney; EGS Electrical Group LLC.
5. 3M Company; Electrical Products Division.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.
PART 3 - EXECUTION

3.1 CONDUCTOR AND INSULATION APPLICATIONS

A. Feeders: Type THHN-THWN, single conductors in raceway.

B. Branch Circuits, including in Crawlspace: Type THHN-THWN, single conductors in raceway.

C. Branch Circuits Concealed in Concrete and below Slabs-on-Grade: Type THHN-THWN, single conductors in raceway.

D. VFC (Variable Frequency Controllers): Provide shielded cable between from controller to motor.

3.2 INSTALLATION

A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

E. Support cables according to Division 16 Section "Basic Electrical Materials and Methods."

F. Seal around cables penetrating fire-rated elements according to Division 7 Section "Through-Penetration Firestop Systems."

G. Identify and color-code conductors and cables according to Division 16 Section.

3.3 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 8 inches of slack.

3.4 FIELD QUALITY CONTROL

A. Testing: Engage a qualified testing agency to perform the following field quality-control testing:

B. Testing: Perform the following field quality-control testing:

1. After installing conductors and cables and before electrical circuitry has been energized, test for compliance with requirements.
2. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Section 7.3.1. Certify compliance with test parameters.

C. Test Reports: Prepare a written report to record the following:

1. Test procedures used.
2. Test results that comply with requirements.
3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

END OF SECTION 260519
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes grounding of electrical systems and equipment. Grounding requirements specified in this Section may be supplemented by special requirements of systems described in other Sections.

1.3 QUALITY ASSURANCE

A. Testing Agency Qualifications: Testing agency as defined by OSHA in 29 CFR 1910.7 or a member company of the InterNational Electrical Testing Association and that is acceptable to authorities having jurisdiction.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1. Comply with UL 467.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Grounding Conductors, Cables, Connectors, and Rods:

 a. Apache Grounding/Erico Inc.
 b. Boggs, Inc.
 c. Chance/Hubbell.
 d. Copperweld Corp.
 e. Ideal Industries, Inc.
2.2 GROUNDING CONDUCTORS

A. For insulated conductors, comply with Division 26 Section "Conductors and Cables."

B. Material: Copper only.

C. Equipment Grounding Conductors: Insulated with green-colored insulation.

D. Grounding Electrode Conductors: Stranded cable.

E. Underground Conductors: Bare, tinned, stranded, unless otherwise indicated.

F. Bare Copper Conductors: Comply with the following:

G. Copper Bonding Conductors: As follows:
 1. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG copper conductor, 1/4 inch in diameter.
 2. Bonding Conductor: No. 4 or No. 6 AWG, stranded copper conductor.
 3. Bonding Jumper: Bare copper tape, braided bare copper conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 4. Tinned Bonding Jumper: Tinned-copper tape, braided copper conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

2.3 CONNECTOR PRODUCTS

A. Comply with IEEE 837 and UL 467; listed for use for specific types, sizes, and combinations of conductors and connected items.

B. Bolted Connectors: Bolted-pressure-type connectors, or compression type.

C. Welded Connectors: Exothermic-welded type, in kit form, and selected per manufacturer's written instructions.
PART 3 - EXECUTION

3.1 APPLICATION

A. In raceways, use insulated equipment grounding conductors.

B. Equipment Grounding Conductor Terminations: Use bolted pressure clamps.

3.2 EQUIPMENT GROUNDING CONDUCTORS

A. Comply with NFPA 70, Article 250, for types, sizes, and quantities of equipment grounding conductors, unless specific types, larger sizes, or more conductors than required by NFPA 70 are indicated.

B. Install equipment grounding conductors in all feeders and circuits.

C. Install insulated equipment grounding conductor with circuit conductors for the following items, in addition to those required by NEC:

1. Feeders and branch circuits.
2. Lighting circuits.
3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Armored and metal-clad cable runs.

D. Nonmetallic Raceways: Install an equipment grounding conductor in nonmetallic raceways unless they are designated for telephone or data cables.

3.3 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Bonding Straps and Jumpers: Install so vibration by equipment mounted on vibration isolation hangers and supports is not transmitted to rigidly mounted equipment. Use exothermic-welded connectors for outdoor locations, unless a disconnect-type connection is required; then, use a bolted clamp. Bond straps directly to the basic structure taking care not to penetrate any adjacent parts. Install straps only in locations accessible for maintenance.
C. Equipment Grounding Conductor Terminations: For No. 8 AWG and larger, use pressure-type grounding lugs. No. 10 AWG and smaller grounding conductors may be terminated with winged pressure-type connectors.

D. Noncontact Metal Raceway Terminations: If metallic raceways terminate at metal housings without mechanical and electrical connection to housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to grounding bus or terminal in housing. Bond electrically noncontinuous conduits at entrances and exits with grounding bushings and bare grounding conductors, unless otherwise indicated.

E. Tighten screws and bolts for grounding and bonding connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A/

F. Compression-Type Connections: Use hydraulic compression tools to provide correct circumferential pressure for compression connectors. Use tools and dies recommended by connector manufacturer. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on grounding conductor.

END OF SECTION 260526
SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
B. Related Sections include the following:
 1. Division 16 Section "Basic Electrical Materials and Methods" for supports, anchors, and identification products.

1.3 DEFINITIONS
A. EMT: Electrical metallic tubing.
B. ENT: Electrical nonmetallic tubing.
C. FMC: Flexible metal conduit.
D. GRSC: Galvanized rigid steel conduit.
E. IMC: Intermediate metal conduit.
F. LFMC: Liquidtight flexible metal conduit.
G. LFNC: Liquidtight flexible nonmetallic conduit.
H. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS
D. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

1.5 COORDINATION

A. Coordinate layout and installation of raceways, boxes, enclosures, cabinets, and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.

2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 METAL CONDUIT AND TUBING

A. Manufacturer:

1. AFC Cable Systems, Inc.
2. Alflex Inc.
3. Anamet Electrical, Inc.; Anaconda Metal Hose.
4. Electri-Flex Co.
5. Grinnell Co./Tyco International; Allied Tube and Conduit Div.
6. LTV Steel Tubular Products Company.
7. Manhattan/CDT/Cole-Flex.
8. O-Z Gedney; Unit of General Signal.
9. Wheatland Tube Co.

B. Rigid Steel Conduit: ANSI C80.1.
C. Aluminum Rigid Conduit: ANSI C80.5.
D. IMC: ANSI C80.6.
E. Plastic-Coated Steel Conduit and Fittings: NEMA RN 1.
G. EMT and Fittings: ANSI C80.3.
 1. Fittings: Compression type.
H. FMC: Aluminum or Zinc-coated steel.
I. LFMC: Flexible steel conduit with PVC jacket.
J. Fittings: NEMA FB 1; compatible with conduit and tubing materials.

2.3 METAL WIREWAYS
A. Manufacturers:
 1. Hoffman.
 2. Square D.
B. Material and Construction: Sheet metal sized and shaped as indicated, NEMA [1] [3R].
C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
D. Select features, unless otherwise indicated, as required to complete wiring system and to comply with NFPA 70.
E. Wireway Covers: Hinged type.
F. Finish: Manufacturer's standard enamel finish.

2.4 BOXES, ENCLOSURES, AND CABINETS
A. Manufacturers:
 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
 2. Emerson/General Signal; Appleton Electric Company.
 3. Erickson Electrical Equipment Co.
6. O-Z/Gedney; Unit of General Signal.
7. RACO; Division of Hubbell, Inc.
10. Spring City Electrical Manufacturing Co.

B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.

C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, Type FD, with gasketed cover.

D. Nonmetallic Outlet and Device Boxes: NEMA OS 2.

E. Floor Boxes: Cast metal, fully adjustable, rectangular.

F. Floor Boxes: Nonmetallic, nonadjustable, round.

G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

H. Cast-Metal Pull and Junction Boxes: NEMA FB 1, cast aluminum with gasketed cover.

I. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous hinge cover and flush latch.

1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.

J. Cabinets: NEMA 250, Type 1, galvanized steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel. Hinged door in front cover with flush latch and concealed hinge. Key latch to match panelboards. Include metal barriers to separate wiring of different systems and voltage and include accessory feet where required for freestanding equipment.

2.5 FACTORY FINISHES

A. Finish: For raceway, enclosure, or cabinet components, provide manufacturer’s standard prime-coat finish ready for field painting.

B. Finish: For raceway, enclosure, or cabinet components, provide manufacturer's standard paint applied to factory-assembled surface raceways, enclosures, and cabinets before shipping.
2.6 SURFACE RACEWAYS

A. Surface Metal Raceways: Galvanized steel with snap-on covers. Ivory painted enamel finish.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Thomas & Betts Corporation.
 c. Wiremold Company (The); Electrical Sales Division.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors:
 1. Exposed: Rigid steel or IMC.
 2. Concealed: Rigid steel or IMC.
 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.

B. Indoors:
 1. Exposed: GRSC, IMC, EMT
 2. Concealed: EMT
 3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC; except use LFMC in damp or wet locations.
 4. Damp or Wet Locations: Rigid steel conduit.
 5. Corrosive locations: Rigid PVC conduit.
 6. Boxes and Enclosures: NEMA 250, Type 1, except as follows:
 a. Damp or Wet Locations: NEMA 250, Type 4, stainless steel.

C. Minimum Raceway Size: 1/2-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
E. PVC Externally Coated, Rigid Steel Conduits: Use only fittings approved for use with that material. Patch all nicks and scrapes in PVC coating after installing conduits.

3.2 INSTALLATION

A. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

B. Complete raceway installation before starting conductor installation.

C. Support raceways as specified in Division 16 Section "Basic Electrical Materials and Methods."

D. Install temporary closures to prevent foreign matter from entering raceways.

E. Protect stub-ups from damage where conduits rise through floor slabs. Arrange so curved portions of bends are not visible above the finished slab.

F. Make bends and offsets so ID is not reduced. Keep legs of bends in the same plane and keep straight legs of offsets parallel, unless otherwise indicated.

G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
 1. Install concealed raceways with a minimum of bends in the shortest practical distance, considering type of building construction and obstructions, unless otherwise indicated.

H. Raceways Embedded in Slabs: Install in middle 1/3 of slab thickness where practical and leave at least 2 inches of concrete cover.
 1. Secure raceways to reinforcing rods to prevent sagging or shifting during concrete placement.
 2. Space raceways laterally to prevent voids in concrete.
 3. Run conduit larger than 1-inch trade size parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 4. Change from nonmetallic tubing to Schedule 80 nonmetallic conduit, rigid steel conduit, or IMC before rising above the floor.

I. Install exposed raceways parallel or at right angles to nearby surfaces or structural members and follow surface contours as much as possible.
 1. Run parallel or banked raceways together on common supports.
 2. Make parallel bends in parallel or banked runs. Use factory elbows only where elbows can be installed parallel; otherwise, provide field bends for parallel raceways.

J. Join raceways with fittings designed and approved for that purpose and make joints tight.
1. Use insulating bushings to protect conductors.

K. Tighten set screws of threadless fittings with suitable tools.

L. Terminations:
 1. Where raceways are terminated with locknuts and bushings, align raceways to enter squarely and install locknuts with dished part against box. Use two locknuts, one inside and one outside box.
 2. Where raceways are terminated with threaded hubs, screw raceways or fittings tightly into hub so end bears against wire protection shoulder. Where chase nipples are used, align raceways so coupling is square to box; tighten chase nipple so no threads are exposed.

M. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire.

N. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with UL-listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where otherwise required by NFPA 70.

O. Stub-up Connections: Extend conduits through concrete floor for connection to freestanding equipment. Install with an adjustable top or coupling threaded inside for plugs set flush with finished floor. Extend conductors to equipment with rigid steel conduit; FMC may be used 6 inches above the floor. Install screwdriver-operated, threaded plugs flush with floor for future equipment connections.

P. Flexible Connections: Use maximum of 72 inches of flexible conduit for recessed and semirecessed lighting fixtures; for equipment subject to vibration, noise transmission, or movement; and for all motors. Use LFMC in damp or wet locations. Install separate ground conductor across flexible connections.

Q. Surface Raceways: Install a separate, green, ground conductor in raceways from junction box supplying raceways to receptacle or fixture ground terminals.

R. Set floor boxes level and flush with finished floor surface.

S. Set floor boxes level. Trim after installation to fit flush with finished floor surface.

T. Install hinged-cover enclosures and cabinets plumb. Support at each corner.
3.3 PROTECTION

A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.4 CLEANING

A. After completing installation of exposed, factory-finished raceways and boxes, inspect exposed finishes and repair damaged finishes.

END OF SECTION 260533
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following:
 1. Identification for raceway and metal-clad cable.
 2. Warning labels and signs.
 3. Instruction signs.
 4. Equipment identification labels.
 5. Miscellaneous identification products.

1.3 SUBMITTALS
 A. Product Data: For each electrical identification product indicated.
 B. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.
 C. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.

1.4 QUALITY ASSURANCE
 B. Comply with NFPA 70.

1.5 COORDINATION
 A. Coordinate identification names, abbreviations, colors, and other features with requirements in the Contract Documents, Shop Drawings, manufacturer's wiring diagrams, and the Operation

B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

C. Coordinate installation of identifying devices with location of access panels and doors.

D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 RACEWAY AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Color for Printed Legend:
 1. Power Circuits: Black letters on an orange field.
 2. Legend: Indicate system or service and voltage, if applicable.

C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

D. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

E. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

F. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches wide; compounded for outdoor use.

2.2 CONDUCTOR AND COMMUNICATION- AND CONTROL-CABLE IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.
B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

C. Aluminum Wraparound Marker Labels: Cut from 0.014-inch-thick aluminum sheet, with stamped, embossed, or scribed legend, and fitted with tabs and matching slots for permanently securing around wire or cable jacket or around groups of conductors.

D. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking nylon tie fastener.

2.3 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment, unless otherwise indicated.

C. Baked-Enamel Warning Signs: Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application. 1/4-inch grommets in corners for mounting. Nominal size, 7 by 10 inches.

D. Metal-Backed, Butyrate Warning Signs: Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch galvanized-steel backing; and with colors, legend, and size required for application. 1/4-inch grommets in corners for mounting. Nominal size, 10 by 14 inches.

E. Warning label and sign shall include, but are not limited to, the following legends:

1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."

2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.4 INSTRUCTION SIGNS

A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch thick for signs up to 20 sq. in. and 1/8 inch thick for larger sizes.

1. Engraved legend with black letters on white face.
2. Punched or drilled for mechanical fasteners.
3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.
2.5 EQUIPMENT IDENTIFICATION LABELS

A. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch.

B. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and ultraviolet-resistant seal for label.

2.6 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Cable Ties: Fungus-inert, self-extinguishing, 1-piece, self-locking, Type 6/6 nylon cable ties.
 2. Tensile Strength: 50 lb, minimum.
 3. Temperature Range: Minus 40 to plus 185 deg F.

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 APPLICATION

A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A: Identify with orange self-adhesive vinyl label

B. Accessible Raceways and Cables of Auxiliary Systems: Identify the following systems with color-coded, self-adhesive vinyl tape applied in bands:
 1. Fire Alarm System: Red.
 5. Mechanical and Electrical Supervisory System: Green and blue.
7. Control Wiring: Green and red.

C. Power-Circuit Conductor Identification: For conductors No. 1/0 AWG and larger in pull and junction boxes, use color-coding conductor tape. Identify source and circuit number of each set of conductors. For single conductor cables, identify phase in addition to the above.

D. Branch-Circuit Conductor Identification: Where there are conductors for more than three branch circuits in same junction or pull box, use color-coding conductor tape. Identify each ungrounded conductor according to source and circuit number.

E. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source and circuit number.

1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

G. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Comply with 29 CFR 1910.145 and apply self-adhesive warning labels. Identify system voltage with black letters on an orange background. Apply to exterior of door, cover, or other access.

1. Equipment Requiring Workspace Clearance According to NFPA 70: Unless otherwise indicated, apply to door or cover of equipment but not on flush panelboards and similar equipment in finished spaces.

H. Instruction Signs:

1. Operating Instructions: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

I. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

1. Labeling Instructions:
a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch high letters on 1-1/2-inch high label; where 2 lines of text are required, use labels 2 inches high.
b. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.

2. Equipment to Be Labeled:
a. Panelboards, electrical cabinets, and enclosures.
b. Access doors and panels for concealed electrical items.
c. Electrical switchgear and switchboards.
d. Disconnect switches.
e. Enclosed circuit breakers.
f. Motor starters.
g. Push-button stations.
h. Power transfer equipment.

3.2 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach nonadhesive signs and plastic labels with screws and auxiliary hardware appropriate to the location and substrate.

F. System Identification Color Banding for Raceways and Cables: Each color band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

G. Color-Coding for Phase and Voltage Level Identification, 600 V and Less: Use the colors listed below for ungrounded service, feeder, and branch-circuit conductors.

1. Color shall be factory applied.
2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
b. Phase B: Red.
c. Phase C: Blue.

3. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

END OF SECTION 260553
SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Cartridge fuses rated 600 V and less for use in switches, switchboards, and controllers.

1.3 SUBMITTALS

A. Product Data: Include the following for each fuse type indicated:

1. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
2. Let-through current curves for fuses with current-limiting characteristics.
3. Time-current curves, coordination charts and tables, and related data.

B. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.

1. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
2. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.

C. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals.

1. Include the following:

a. Let-through current curves for fuses with current-limiting characteristics.
b. Time-current curves, coordination charts and tables, and related data.
c. Ambient temperature adjustment information.
1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain fuses from a single manufacturer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NEMA FU 1.

D. Comply with NFPA 70.

1.5 PROJECT CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

1.6 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cooper Bussman, Inc.
2. Ferraz Shawmut, Inc.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuse; class and current rating indicated; voltage rating consistent with circuit voltage.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

B. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

A. Motor Branch Circuits: Class RK1 or RK5, time delay.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.4 IDENTIFICATION

A. Install labels indicating fuse replacement information on inside door of each fused switch.

END OF SECTION 262813
SECTION 262923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes separately enclosed, pre-assembled, combination VFCs, rated 600 V and less, for speed control of three-phase, squirrel-cage induction motors.

1.3 DEFINITIONS
A. BAS: Building automation system.
B. CE: Conformite Europeene (European Compliance).
C. CPT: Control power transformer.
D. EMI: Electromagnetic interference.
E. IGBT: Insulated-gate bipolar transistor.
F. LAN: Local area network.
G. LED: Light-emitting diode.
H. MCP: Motor-circuit protector.
I. NC: Normally closed.
J. NO: Normally open.
K. OCPD: Overcurrent protective device.
L. PCC: Point of common coupling.
M. PID: Control action, proportional plus integral plus derivative.
N. PWM: Pulse-width modulated.
O. RFI: Radio-frequency interference.

P. TDD: Total demand (harmonic current) distortion.

Q. THD(V): Total harmonic voltage demand.

R. VFC: Variable-frequency motor controller.

1.4 SUBMITTALS

A. Product Data: For each type and rating of VFC indicated. Include features, performance, electrical ratings, operating characteristics, shipping and operating weights, and furnished specialties and accessories.

B. Shop Drawings: For each VFC indicated. Include dimensioned plans, elevations, and sections; and conduit entry locations and sizes, mounting arrangements, and details, including required clearances and service space around equipment.

1. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 a. Each installed unit's type and details.
 b. Factory-installed devices.
 c. Enclosure types and details.
 d. Nameplate legends.
 e. Short-circuit current (withstand) rating of enclosed unit.
 f. Features, characteristics, ratings, and factory settings of each VFC and installed devices.
 g. Specified modifications.

2. Schematic and Connection Wiring Diagrams: For power, signal, and control wiring.

C. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around VFCs. Show VFC layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.

D. Qualification Data: For qualified testing agency.

E. Product Certificates: For each VFC, from manufacturer.

F. Source quality-control reports.

G. Field quality-control reports.
H. Operation and Maintenance Data: For VFCs to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:

1. Manufacturer's written instructions for testing and adjusting thermal-magnetic circuit breaker and MCP trip settings.
2. Manufacturer's written instructions for setting field-adjustable overload relays.
3. Manufacturer's written instructions for testing, adjusting, and reprogramming microprocessor control modules.
4. Manufacturer's written instructions for setting field-adjustable timers, controls, and status and alarm points.

I. Load-Current and Overload-Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate, full-load currents.

J. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NFPA 70.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Store only in space that is permanently enclosed and dry.

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation, capable of driving full load without derating, under the following conditions unless otherwise indicated:
1. Ambient Temperature: Not less than 14 deg F (minus 10 deg C) and not exceeding 104 deg F (40 deg C).
2. Ambient Storage Temperature: Not less than minus 4 deg F (minus 20 deg C) and not exceeding 140 deg F (60 deg C)
3. Humidity: Less than 95 percent (noncondensing).
4. Altitude: Not exceeding 3300 feet (1005 m).

1.8 COORDINATION

A. Coordinate features of motors, load characteristics, installed units, and accessory devices to be compatible with the following:

1. Torque, speed, and horsepower requirements of the load.
2. Ratings and characteristics of supply circuit and required control sequence.
3. Ambient and environmental conditions of installation location.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases.

C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.9 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace VFCs that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

1.10 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Power Fuses: Two of each size and type.
2. Control Power Fuses: Two of each size and type.
3. Indicating Lights: Two of each type and color installed.
4. Auxiliary Contacts: Furnish one spare for each size and type of magnetic controller installed.
5. Power Contacts: Furnish two spares for each size and type of magnetic contactor installed.
PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. ABB.
2. Johnson Controls
5. Siemens Energy & Automation, Inc.
6. Square D; a brand of Schneider Electric.

B. General Requirements for VFCs: Comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508C.

C. Application: Constant torque and variable torque.

D. VFC Description: Variable-frequency power converter (rectifier, dc bus, and IGBT, PWM inverter) factory packaged in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL as a complete unit; arranged to provide self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency.

1. Units suitable for operation of NEMA MG 1, Design A and Design B motors as defined by NEMA MG 1, Section IV, Part 30, "Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both."
2. Units suitable for operation of inverter-duty motors as defined by NEMA MG 1, Section IV, Part 31, "Definite-Purpose Inverter-Fed Polyphase Motors."
3. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction.

E. Design and Rating: Match load type, such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.

F. Output Rating: Three-phase; 10 to 60Hz; maximum voltage equals input voltage.

G. Unit Operating Requirements:

1. Input AC Voltage Tolerance: Plus 10 and minus 15 percent of VFC input voltage rating.
3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
4. Minimum Efficiency: 97 percent at 60 Hz, full load.
5. Minimum Displacement Primary-Side Power Factor: 98 percent under any load or speed condition.
6. Minimum Short-Circuit Current (Withstand) Rating > 40 kA.
7. Ambient Temperature Rating: Not less than 14 deg F (minus 10 deg C) and not exceeding 104 deg F (40 deg C).
8. Ambient Storage Temperature Rating: Not less than minus 4 deg F (minus 20 deg C) and not exceeding 140 deg F (60 deg C).
10. Altitude Rating: Not exceeding 3300 feet (1005 m).
12. Overload Capability: 1.1 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
13. Starting Torque: Minimum 100 percent of rated torque from 3 to 60 Hz.
14. Speed Regulation: Plus or minus 5 percent.
15. Output Carrier Frequency: Selectable; 0.5 to 15 kHz.
16. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.

H. Inverter Logic: Microprocessor based, 32 bit, isolated from all power circuits.

I. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.

J. Internal Adjustability Capabilities:

1. Minimum Speed: 5 to 25 percent of maximum rpm.
2. Maximum Speed: 80 to 100 percent of maximum rpm.
3. Acceleration: 0.1 to 999.9 seconds.
4. Deceleration: 0.1 to 999.9 seconds.
5. Current Limit: 30 to minimum of 150 percent of maximum rating.

K. Self-Protection and Reliability Features:

1. Input transient protection by means of surge suppressors to provide three-phase protection against damage from supply voltage surges 10 percent or more above nominal line voltage.
2. Loss of Input Signal Protection: Selectable response strategy, including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
4. Inverter overcurrent trips.
5. VFC and Motor Overload/Overtemperature Protection: Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for providing VFC overtemperature and motor overload alarm and trip; settings selectable via the keypad; NRTL approved.
6. Critical frequency rejection, with three selectable, adjustable deadbands.
7. Instantaneous line-to-line and line-to-ground overcurrent trips.
10. Short-circuit protection.
11. Motor overtemperature fault.

L. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.

M. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.

N. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.

O. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.

P. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.

Q. Integral Input Disconnecting Means and OCPD: NEMA AB 1, thermal-magnetic circuit breaker with pad-lockable, door-mounted handle mechanism.
 1. Disconnect Rating: Not less than 115 percent of VFC input current rating.
 2. Disconnect Rating: Not less than 115 percent of NFPA 70 motor full-load current rating or VFC input current rating, whichever is larger.
 3. Auxiliary Contacts: NO/NC, arranged to activate before switch blades open.
 4. Auxiliary contacts "a" and "b" arranged to activate with circuit-breaker handle.
 5. Form C alarm contact that operates only when circuit breaker has tripped.

2.2 CONTROLS AND INDICATION

A. Status Lights: Door-mounted LED indicators displaying the following conditions:
 1. Power on.
 2. Run.
 3. Overvoltage.
 4. Line fault.
 5. Overcurrent.
B. Panel-Mounted Operator Station: Manufacturer's standard front-accessible, sealed keypad and plain-English language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.

1. Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.

2. Security Access: Provide electronic security access to controls through identification and password with at least three levels of access: View only; view and operate; and view, operate, and service.

 a. Control Authority: Supports at least four conditions: Off, local manual control at VFC, local automatic control at VFC, and automatic control through a remote source.

C. Historical Logging Information and Displays:

1. Real-time clock with current time and date.
2. Running log of total power versus time.
3. Total run time.
4. Fault log, maintaining last four faults with time and date stamp for each.

D. Indicating Devices: Digital display mounted flush in VFC door and connected to display VFC parameters including, but not limited to:

1. Output frequency (Hz).
5. Motor torque (percent).
6. Fault or alarming status (code).
7. PID feedback signal (percent).
8. DC-link voltage (V dc).
9. Set point frequency (Hz).
10. Motor output voltage (V ac).

E. Control Signal Interfaces:

1. Electric Input Signal Interface:

 a. A minimum of two programmable analog inputs: 0- to 10-V dc or 4- to 20-mA dc
 b. A minimum of six multifunction programmable digital inputs.

2. Pneumatic Input Signal Interface: 3 to 15 psig.
3. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the BAS or other control systems:

 a. 0- to 10-V dc.
b. 4- to 20-mA dc.
c. Potentiometer using up/down digital inputs.
d. Fixed frequencies using digital inputs.

4. Output Signal Interface: A minimum of one programmable analog output signal(s) 0- to 10-V dc or 4- to 20-mA dc, which can be configured for any of the following:

a. Output frequency (Hz).
b. Output current (load).
c. DC-link voltage (V dc).
d. Motor torque (percent).
e. Motor speed (rpm).
f. Set point frequency (Hz).

5. Remote Indication Interface: A minimum of two programmable dry-circuit relay outputs (120-V ac, 1 A) for remote indication of the following:

a. Motor running.
b. Set point speed reached.
c. Fault and warning indication (overtemperature or overcurrent).
d. PID high- or low-speed limits reached.

F. PID Control Interface: Provides closed-loop set point, differential feedback control in response to dual feedback signals. Allows for closed-loop control of fans and pumps for pressure, flow, or temperature regulation.

1. Number of Loops: One.

G. BAS Interface: Factory-installed hardware and software to enable the BAS to monitor, control, and display VFC status and alarms. Allows VFC to be used with an external system within a multidrop LAN configuration; settings retained within VFC's nonvolatile memory.

1. Network Communications Ports: Ethernet and RS-422/485.
2. Embedded BAS Protocols for Network Communications: ASHRAE 135 BACnet, Johnson Metasys N2; protocols accessible via the communications ports.

2.3 LINE CONDITIONING AND FILTERING

A. Harmonic filters (passive or active), phase multiplication devices, or other components shall be provided as required to mitigate harmonic voltage THD to 5% maximum and current THD to 5% maximum and shall be applied as an integral part of the VFC system. Compliance measurement shall be based on THD added during VFC full-load operation at the VFC input terminals. Methods which employ shunt tuned filters shall be designed to prevent the importation of outside harmonics and shall not result in system resonance or filter failure.

B. EMI/RFI Filtering: CE marked; certify compliance with IEC 61800-3 for Category C2.
2.4 OPTIONAL FEATURES

A. Multiple-Motor Capability: VFC suitable for variable-speed service to multiple motors. Overload protection shuts down VFC and motors served by it, and generates fault indications, when overload protection activates.

1. Configure to allow two or more motors to operate simultaneously at the same speed; separate overload relay for each controlled motor.
2. Configure to allow two motors to operate separately; operator selectable via local or remote switch or contact closures; single overload relay for both motors; separate output magnetic contactors for each motor.
3. Configure to allow two motors to operate simultaneously and in a lead/lag mode, with one motor operated at variable speed via the power converter and the other at constant speed via the bypass controller; separate overload relay for each controlled motor.

B. Damper control circuit with end of travel feedback capability.

C. Sleep Function: Senses a minimal deviation of a feedback signal and stops the motor. On an increase in speed-command signal deviation, VFC resumes normal operation.

2.5 ENCLOSURES

A. VFC Enclosures: NEMA 250, to comply with environmental conditions at installed location.

1. Dry and Clean Indoor Locations: Type 1.
2. Outdoor Locations: Type 3R.

2.6 ACCESSORIES

A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in VFC enclosure cover unless otherwise indicated.

B. Control Relays: Auxiliary and adjustable time-delay relays.

2.7 SOURCE QUALITY CONTROL

A. Testing: Test and inspect VFCs according to requirements in NEMA ICS 61800-2.
 1. Test each VFC while connected to its specified motor.
 2. Verification of Performance: Rate VFCs according to operation of functions and features specified.

B. VFCs will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, surfaces, and substrates to receive VFCs, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance.

B. Examine VFC before installation. Reject VFCs that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 HARMONIC ANALYSIS STUDY

A. Prepare a harmonic analysis study and report complying with IEEE 399 and NETA Acceptance Testing Specification.

3.3 INSTALLATION

A. Coordinate layout and installation of VFCs with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Wall-Mounting Controllers: Install VFCs on walls with tops at uniform height and with disconnect operating handles not higher than 79 inches (2000 mm) above finished floor unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Division 26 Section “Hangers and Supports for Electrical Systems.”
C. Install fuses in each fusible-switch VFC.

D. Install fuses in control circuits if not factory installed. Comply with requirements in Division 26 Section "Fuses."

E. Install heaters in thermal-overload relays. Select heaters based on actual nameplate full-load amperes after motors have been installed.

F. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.

G. Comply with NECA 1.

3.4 IDENTIFICATION

A. Identify VFCs, components, and control wiring. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each VFC with engraved nameplate.
3. Label each enclosure-mounted control and pilot device.

B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

3.5 WIRING INSTALLATION

A. Provide shielded three conductor XLP VFD cable between VFC and motor. Oversize conduit where required to accommodate cable assembly.

B. Bundle, train, and support wiring in enclosures.

C. Connect selector switches and other automatic control devices where applicable.

1. Connect selector switches to bypass only those manual- and automatic control devices that have no safety functions when switches are in manual-control position.
2. Connect selector switches with control circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.
3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:
 1. Test insulation resistance for each VFC element, bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

E. Tests and Inspections:
 1. Inspect VFC, wiring, components, connections, and equipment installation.
 2. Test insulation resistance for each VFC element, component, connecting motor supply, feeder, and control circuits.
 3. Test continuity of each circuit.
 4. Verify that voltages at VFC locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Engineer before starting the motor(s).
 5. Test each motor for proper phase rotation.
 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 8. Perform the following infrared (thermographic) scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each VFC. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each VFC 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 9. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
F. VFCs will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies the VFC and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.7 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.

3.8 ADJUSTING

A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.

B. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.

C. Adjust the trip settings of MCPs and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to six times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cool-down between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Engineer before increasing settings.

D. Set the taps on reduced-voltage autotransformer controllers.

E. Set field-adjustable pressure switches.

3.9 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until controllers are ready to be energized and placed into service.

B. Replace VFCs whose interiors have been exposed to water or other liquids prior to Substantial Completion.
3.10 DEMONSTRATION

A. Train Owner’s maintenance personnel to adjust, operate, reprogram, and maintain VFCs.

END OF SECTION 262923
SECTION 265800 - MOTOR CONNECTIONS/ STARTING EQUIPMENT

PART 1 - GENERAL

1.1 SCOPE

A. Provide connections to all HVAC motorized equipment and Owner furnished equipment. Provide all disconnects and associated wiring. HVAC equipment shall include, but not be limited to all equipment indicated on Div. 15 drawings and schedules.

1.2 SUBMITTALS

A. Shop drawing and operating and maintenance instructions indicating manufacturer, types, ratings, and accessories for all motor starting equipment used on project.

PART 2 - PRODUCTS

2.1 MOTOR STARTING SWITCHES

A. Snap action toggle type which clearly indicates "On", "Off", and "Trip" positions with properly sized thermal overload protection. Acceptable Manufacturers: Allen-Bradley or Square D.

2.2 FUSIBLE BOX COVER UNITS (SSU)

A. Combination snap switch and plug fuse holder, with plug fuse as required. BUSSMAN FLC.

2.3 MAGNETIC STARTERS

A. Full voltage non-reversing type, unless indicated otherwise, with properly sized overload protection in all phases; low voltage protection or release, external manual resets, 120V rated holding coil, control circuit transformer sized for the number of devices controlled, secondary fuse block and fuses, interlock contacts rated for the unit controlled, and NEMA 1 enclosure. Provide auxiliary contacts or relays if standard interlock contacts are not adequate. Acceptable Manufacturers: Allen-Bradley or Square D.

2.4 COMBINATION MAGNETIC STARTER/SAFETY SWITCH

A. Magnetic starter as previously specified with quick-make quick-break switching mechanism, indicating handle which accepts a minimum of three padlocks, fuse clips for fuses as specified in Basic Materials and Methods - Section 16100 horsepower rated and with cover with defeatable interlocks. Acceptable Manufacturers: Allen-Bradley or Square D.
2.5 CONTROL DEVICES

A. Oiltight type, single hole mounting, mounted in starter covers unless indicated otherwise. Acceptable Manufacturers: Allen-Bradley or Square D.

1. Pushbutton Stations: Labeled "Start" button, red button labeled "Stop", and other designations and labeling as indicated.

2. Selector Switches: Unless indicated otherwise, maintained position type, two position "On-Off" and three position "Hand-Off-Auto" when in a circuit with an automatic device (e.g. a thermostat).

PART 3 - EXECUTION

3.1 GENERAL

A. Make all connections to motor and control equipment complete and leave equipment in proper operating order. Connect power to motor for correct direction of rotation. Verify nameplate ratings of motors described and of motors delivered to site and installed. Size motor starter overload elements as required for each motor's full load current rating, service factor, and for motors and controllers in locations of different ambient temperatures.

3.2 OVERCURRENT AND OVERLOAD PROTECTION

A. Install fuses as specified in Basic Materials and Methods - Section 16100 and indicate fuse amperage, voltage, and type using adhesive labels as supplied by the fuse manufacturer affixed to the inside of each cover of starters with fuses. Indicate motor starter overload element manufacturer, trip type, and thermal unit type using adhesive labels affixed to the inside of each cover.

3.3 FRACTIONAL HORSEPOWER PROTECTION

A. Provide SSU for all motors smaller than 1/4 HP. Provide manual motor starter switch for all other motors.

3.4 "HAND-OFF-AUTO" CONTROL DEVICES

A. Connect so that the motors run when switch is in the "Hand" position regardless of other control devices except where devices are installed for reasons of safety, to prevent damage to the motor or equipment, or unless indicated otherwise.

3.5 CONTROL WIRING

A. Unless indicated otherwise use No. 14 AWG wire for all control circuit. Connect all control circuitry for motors so that when the circuit to motor is disconnected the control power is also disconnected. When control power is from a source other than the motor's power source, install
auxiliary interlock disconnects integral with the motor's disconnect and, when equipment design does not allow this, install a lockable, labeled controlled power disconnect immediately adjacent to the motor disconnect.

1. Provide all control wiring indicated on the Plans or described on the motor schedule.

3.6 CONTROL DEVICE INSTALLATION

A. Install control devices in starter covers unless indicated otherwise. When control devices are remote mounted from starters and for motor starting switches, mount devices in surface outlet boxes in unfinished areas and flush in finished areas. Label devices as required in General Provisions - Section 16010.

3.7 ROOFTOP EQUIPMENT

A. Install wiring to rooftop equipment (e.g. power roof ventilators) so that all conduit and wiring will be covered by unit. When penetrating roof membranes, install conduits inside pitch pockets. Provide GFCI receptacle at each equipment item.

3.8 MOUNTING BOARDS

A. When control devices and individual starters or groups of individual starters are installed in building on uninsulated walls, mount on new 3/4” exterior grade, primed and painted plywood of size required.

END OF SECTION 265800