Date: June 14, 2010

RE: City of Duluth Bid #10-4401
 (New Passenger Terminal Bid Package 1 – Sitework, Structure and Enclosure)

 Addendum No. 2

TO: Prospective Bidders

This Addendum forms a part of the Contract Documents and modifies the original Bidding Documents dated May 17, 2010. Acknowledge receipt of this Addendum in the space provided on the Bid Form. Failure to do so may subject the Bidder to disqualification.

Invitation to Bid:

No changes.

Bid Form:

No changes.

Specifications:

Table of Contents: Division 15 – Mechanical ADD the following four (4) sections:
15161 – Hangers, Supports, Anchors and Guides, 15 pages.
15075 – Identification, 6 pages.
15083 – Pipe Insulation, 21 pages.
15121 Pipe Expansion and Fittings, 4 pages.

Division 15 – Mechanical ADD the following four (4) specification sections:
15161 – Hangers, Supports, Anchors and Guides, 15 pages.
15075 – Identification, 6 pages.
15083 – Pipe Insulation, 21 pages.
15121 Pipe Expansion and Fittings, 4 pages.

Drawings: ADD list of drawings below with attached sheets to this Addendum No. 2
ADDED Architectural Drawings – Volume 2

Sheet P110 – Enlarged First Floor Plumbing Plan Area A.
Sheet P111 – Enlarged First Floor Plumbing Plan Area B.
Sheet P112 – Enlarged Second Floor Plumbing Plan Area A.
Sheet P113 – Enlarged Second Floor Plumbing Plan Area B.
Sheet P114 – Enlarged Third Floor Plumbing Plan Area A.
Sheet P115 – Enlarged Third Floor Plumbing Plan Area B.
Sheet P116 – Enlarged Roof Level Plumbing Plan Area A.
Sheet P117 – Enlarged Roof Level Plumbing Plan Area B.
Sheet P118 – Enlarged First Floor Plumbing Plan Area A Canopy.
Sheet P119 – Enlarged First Floor Plumbing Plan Area B Canopy.
Sheet P120 – Enlarged First Floor Plumbing Plan Area A Canopy Roof.
Sheet P121 – Enlarged First Floor Plumbing Plan Area B Canopy Roof.
Sheet P301 – Water Schematic, Gas Schematic and Storm Riser Diagram.
All else remains the same.

Sincerely,
Reynolds, Smith and Hills, Inc.

John E. Hippchen, PE

END OF ADDENDUM NO. 1
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes hangers and supports for plumbing system piping and equipment.

B. Related Sections include the following:

1. Division 5 Section Metal Fabrications for materials for attaching hangers and supports to building structure.

2. Division 15 Section 15072 Plumbing - Vibration Controls and Seismic Restraints for vibration isolation and seismic restraint devices.

3. Division 15 Section 15140 Domestic water piping.

4. Division 15 Section 15150 Domestic water piping.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society for the Valve and Fittings Industry.

B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

A. Design channel support systems for piping to support multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.

B. Design heavy-duty steel trapezes for piping to support multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.

C. Design seismic restraint hangers and supports for piping and equipment.

D. Design and obtain approval from authorities having jurisdiction for seismic restraint hangers and supports for piping and equipment.
1.5 SUBMITTALS

A. Product Data: For each type of pipe hanger, channel support system component, and thermal-hanger shield insert indicated.

B. Shop Drawings: Signed and sealed by a qualified professional engineer for multiple piping supports and trapeze hangers. Include design calculations and indicate size and characteristics of components and fabrication details.

C. Welding Certificates: Copies of certificates for welding procedures and operators.

1.6 QUALITY ASSURANCE

A. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

B. Engineering Responsibility: Design and preparation of Shop Drawings and calculations for each multiple pipe support and trapeze by a qualified professional engineer.

C. Engineering Responsibility: Design and preparation of Shop Drawings and calculations for each multiple pipe support, trapeze, and seismic restraint by a qualified professional engineer.

1. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of hangers and supports that are similar to those indicated for this Project in material, design, and extent.

PART 2- PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Pipe Hangers:

 (a) B-Line Systems, Inc.

 (b) Grinnell Corp.

 (c) Michigan Hanger Co., Inc.

 (d) PHD Manufacturing, Inc.
2. Channel Support Systems:
 (a) B-Line Systems, Inc.
 (b) Grinnell Corp.; Power-Strut Unit.
 (c) Michigan Hanger Co., Inc.; O-Strut Div.
 (d) Thomas & Betts Corp.
 (e) Unistrut Corp.

3. Thermal-Hanger Shield Inserts:
 (a) Carpenter & Patterson, Inc.
 (b) Michigan Hanger Co., Inc.
 (c) PHS Industries, Inc.
 (d) Pipe Shields, Inc.
 (e) Rilco Manufacturing Co., Inc.

4. Powder-Actuated Fastener Systems:
 (a) Gunnebo Fastening Corp.
 (b) Hilti, Inc.
 (c) ITW Ramset/Red Head.
 (d) Masterset Fastening Systems, Inc.

2.2 MANUFACTURED UNITS

A. Pipe Hangers, Supports, and Components: MSS SP-58, factory-fabricated components. Refer to "Hanger and Support Applications" Article in Part 3 for where to use specific hanger and support types.

1. Galvanized, Metallic Coatings: For piping and equipment that will not have field-applied finish.

2. Nonmetallic Coatings: On attachments for electrolytic protection where attachments are in direct contact with copper tubing.

B. Channel Support Systems: MFMA-2, factory-fabricated components for field assembly.

1. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.

PLUMBING - HANGERS, SUPPORTS, ANCHORS AND GUIDES
Bid Package 1 - Addendum 2
15061-3
2. Nonmetallic Coatings: On attachments for electrolytic protection where attachments are in direct contact with copper tubing.

C. Thermal-Hanger Shield Inserts: 100-psi (690-kPa) minimum compressive-strength insulation, encased in sheet metal shield.

1. Material for Cold Piping: ASTM C 552, Type I cellular glass or water-repellent-treated, ASTM C 533, Type I calcium silicate with vapor barrier.

2. Material for Cold Piping: ASTM C 552, Type I cellular glass with vapor barrier.

4. Material for Hot Piping: ASTM C 552, Type I cellular glass or water-repellent-treated, ASTM C 533, Type I calcium silicate.

5. Material for Hot Piping: ASTM C 552, Type I cellular glass.

7. For Trapeze or Clamped System: Insert and shield cover entire circumference of pipe.

8. For Clevis or Band Hanger: Insert and shield cover lower 180 degrees of pipe.

9. Insert Length: Extend 2 inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.

2.3 MISCELLANEOUS MATERIALS

A. Powder-Actuated Drive-Pin Fasteners: Powder-actuated-type, drive-pin attachments with pull-out and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Anchor Fasteners: Insert-type attachments with pull-out and shear capacities appropriate for supported loads and building materials where used.

C. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars, black and galvanized.

D. Grout: ASTM C 1107, Grade B, factory-mixed and -packaged, nonshrink and nonmetallic, dry, hydraulic-cement grout.

1. Characteristics: Post hardening and volume adjusting; recommended for both interior and exterior applications.

3. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3- EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

A. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Specification Sections.

B. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. Adjustable Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS ½ to NPS 30 (DN15 to DN750).

2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F (49 to 232 deg C) pipes, NPS 4 to NPS 16 (DN100 to DN400), requiring up to 4 inches (100 mm) of insulation.

3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24 (DN20 to DN600), requiring clamp flexibility and up to 4 inches (100 mm) of insulation.

4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS ½ to NPS 24 (DN15 to DN600), if little or no insulation is required.

5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS ½ to NPS 4 (DN15 to DN100), to allow off-center closure for hanger installation before pipe erection.

6. Adjustable Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8 (DN20 to DN200).

7. Adjustable Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS ½ to NPS 8 (DN15 to DN200).

8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated stationary pipes, NPS ½ to NPS 8 (DN15 to DN200).

9. Adjustable Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated stationary pipes, NPS ½ to NPS 2 (DN15 to DN50).

10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8 (DN10 to DN200).
11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3 (DN10 to DN80).

12. U-Bolts (MSS Type 24): For support of heavy pipe, NPS 1/2 to NPS 30 (DN15 to DN750).

13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.

14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36 (DN100 to DN900), with steel pipe base stanchion support and cast-iron floor flange.

15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36 (DN100 to DN900), with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.

16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36 (DN65 to DN900), if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.

17. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30 (DN25 to DN750), from two rods if longitudinal movement caused by expansion and contraction might occur.

18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20 (DN65 to DN500), from single rod if horizontal movement caused by expansion and contraction might occur.

19. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42 (DN50 to DN1050), if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24 (DN50 to DN600), if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.

21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30 (DN50 to DN750), if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

C. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20 (DN20 to DN500).
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20 (DN20 to DN500), if longer ends are required for riser clamps.

D. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches (150 mm) for heavy loads.

2. Steel Clevises (MSS Type 14): For 120 to 450 deg F (49 to 232 deg C) piping installations.

3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.

4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.

5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F (49 to 232 deg C) piping installations.

E. Building Attachments: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.

2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.

3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.

4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.

5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.

6. C-Clamps (MSS Type 23): For structural shapes.

7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.

8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.

9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.

11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.

12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:

(a) Light (MSS Type 31): 750 lb (340 kg).
(b) Medium (MSS Type 32): 1500 lb (675 kg).
(c) Heavy (MSS Type 33): 3000 lb (1350 kg).

13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.

14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where head room is limited.

F. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.

2. Protection Shields (MSS Type 40): Of length recommended by manufacturer to prevent crushing insulation.

3. Thermal-Hanger Shield Inserts: For supporting insulated pipe, 360-degree insert of high-density, 100-psi (690-kPa) minimum compressive-strength, water-repellent-treated calcium silicate or cellular-glass pipe insulation, same thickness as adjoining insulation with vapor barrier and encased in 360-degree sheet metal shield.

G. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.

2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches (32 mm).

3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.

5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.

6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.

7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from trapeze support.

8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:

 (a) Horizontal (MSS Type 54): Mounted horizontally.

 (b) Vertical (MSS Type 55): Mounted vertically.

 (c) Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

3.2 HANGER AND SUPPORT INSTALLATION

A. Pipe Hanger and Support Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

1. Vertical Piping: MSS Type 8 or Type 42, clamps.

2. Individual, Straight, Horizontal Piping Runs: According to the following:

 (a) 100 Feet (30 m) and Less: MSS Type 1, adjustable, steel clevis hangers.

 (b) Longer Than 100 Feet (3 m): MSS Type 43, adjustable roller hangers.

 (c) Longer Than 100 Feet (30 m), if Indicated: MSS Type 49, spring cushion rolls.

3. Multiple, Straight, Horizontal Piping Runs 100 feet (30 m) or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.

4. Base of Vertical Piping: MSS Type 52, spring hangers.
B. Support vertical piping and tubing at base and at each floor.

C. Rod diameter may be reduced 1 size for double-rod hangers, to a minimum of 3/8 inch (10 mm).

D. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/4 (DN 32) and Smaller: 84 inches (2100 mm) with 3/8-inch (10-mm) rod.
2. NPS 1-1/2 (DN 40): 108 inches (2700 mm) with 3/8-inch (10-mm) rod.
3. NPS 2 (DN 50): 10 feet (3 m) with 3/8-inch (10-mm) rod.
4. NPS 2-1/2 (DN 65): 11 feet (3.4 m) with 1/2-inch (13-mm) rod.
5. NPS 3 and NPS 3-1/2 (DN 80 and DN 90): 12 feet (3.7 m) with 1/2-inch (13-mm) rod.
6. NPS 4 and NPS 5 (DN 100 and DN 125): 12 feet (3.7 m) with 5/8-inch (16-mm) rod.
7. NPS 6 (DN 150): 12 feet (3.7 m) with 3/4-inch (19-mm) rod.
8. NPS 8 to NPS 12 (DN 200 to DN 300): 12 feet (3.7 m) with 7/8-inch (22-mm) rod.

E. Install supports for vertical steel piping every 15 feet (4.5 m).

F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): 60 inches (1500 mm) with 3/8-inch (10-mm) rod.
2. NPS 3 (DN 80): 60 inches (1500 mm) with 1/2-inch (13-mm) rod.
3. NPS 4 and NPS 5 (DN 100 and DN 125): 60 inches (1500 mm) with 5/8-inch (16-mm) rod.
4. NPS 6 (DN 150): 60 inches (1500 mm) with 3/4-inch (19-mm) rod.
5. NPS 8 to NPS 12 (DN 200 to DN 300): 60 inches (1500 mm) with 7/8-inch (22-mm) rod.
6. NPS 15 (DN 375): 60 inches (1500 mm) with 1-inch (25-mm) rod.
7. Spacing for 10-foot (3-m) lengths may be increased to 10 feet (3 m). Spacing for fittings is limited to 60 inches (1500 mm).
G. Install supports for vertical cast-iron soil piping every 15 feet (4.5 m).

H. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 3/4 (DN 20) and Smaller: 60 inches (1500 mm) with 3/8-inch (10-mm) rod.
2. NPS 1 and NPS 1-1/4 (DN 25 and DN 32): 72 inches (1800 mm) with 3/8-inch (10-mm) rod.
3. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): 96 inches (2400 mm) with 3/8-inch (10-mm) rod.
4. NPS 2-1/2 (DN 65): 108 inches (2700 mm) with ½-inch (13-mm) rod.
5. NPS 3 to NPS 5 (DN 80 to DN 125): 10 feet (3 m) with 1/2-inch (13-mm) rod.
6. NPS 6 (DN 150): 10 feet (3 m) with 5/8-inch (16-mm) rod.
7. NPS 8 (DN 200): 10 feet (3 m) with 3/4-inch (19-mm) rod.

I. Install supports for vertical copper tubing every 10 feet (3 m).

J. Install hangers for CPVC piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1 (DN 25) and Smaller: 36 inches (900 mm) with 3/8-inch (10-mm) rod.
2. NPS 1-1/4 to NPS 2 (DN 32 to DN 50): 48 inches (1200 mm) with 3/8-inch (10-mm) rod.
3. NPS 2-1/2 to NPS 3-1/2 (DN 65 to DN 90): 48 inches (1200 mm) with 1/2-inch (13-mm) rod.
4. NPS 4 and NPS 5 (DN 100 and DN 125): 48 inches (1200 mm) with 5/8-inch (16-mm) rod.
5. NPS 6 (DN 150): 28 inches (1200 mm) with 3/4-inch (19-mm) rod.
6. NPS 8 (DN 200): 48 inches (1200 mm) with 7/8-inch (22-mm) rod.

K. Install supports for vertical CPVC piping every 60 inches (1500 mm) for NPS 1 (DN 25) and smaller and every 72 inches (1800 mm) for NPS 1-1/4 (DN 32) and larger.

L. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 2 (DN 50) and Smaller: 48 inches (1200 mm) with 3/8-inch (10-mm) rod.
2. NPS 2-1/2 to NPS 3-1/2 (DN 65 to DN 90): 48 inches (1200 mm) with 1/2-inch (13-mm) rod.

3. NPS 4 and NPS 5 (DN 100 and DN 125): 48 inches (1200 mm) with 5/8-inch (16-mm) rod.

4. NPS 6 (DN 150): 48 inches (1200 mm) with 3/4-inch (19-mm) rod.

5. NPS 8 to NPS 12 (DN 200 to Dn 300): 48 inches (1200 mm) with 7/8-inch (22-mm) rod.

M. Install supports for vertical PVC piping every 48 inches (1200 mm).

N. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.3 HANGER AND SUPPORT INSTALLATION

A. Pipe Hanger and Support Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Channel Support System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled channel systems.

1. Field assemble and install according to manufacturer's written instructions.

C. Heavy-Duty Steel Trapeze Installation: Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated, heavy-duty trapezes.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.

2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D-1.1.

D. Install building attachments within concrete slabs or attach to structural steel. Space attachments within maximum piping span length indicated in MSS SP-69. Install additional attachments at concentrated loads, including valves, flanges, guides, strainers, and expansion joints, and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

E. Install powder-actuated drive-pin fasteners in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer’s operating manual.

F. Install mechanical-anchor fasteners in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer’s written instructions.
G. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

J. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9, "Building Services Piping," is not exceeded.

K. Insulated Piping: Comply with the following:

1. Attach clamps and spacers to piping.
 (a) Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 (b) Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 (c) Do not exceed pipe stress limits according to ASME B31.9.

2. Install MSS SP-58, Type 39 protection saddles, if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 (a) Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN100) and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40 protective shields on cold piping with vapor barrier. Shields shall span arc of 180 degrees.
 (a) Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN100) and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 (a) NPS 1/4 to NPS 3-1/2 (DN8 to DN90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
 (b) NPS 4 (DN100): 12 inches (305 mm) long and 0.06 inch (1.52 mm) thick.
 (c) NPS 5 and NPS 6 (DN125 and DN150): 18 inches (457 mm) long and 0.06 inch (1.52 mm) thick.
(d) NPS 8 to NPS 14 (DN200 to DN350): 24 inches (610 mm) long and 0.075 inch (1.91 mm) thick.

(e) NPS 16 to NPS 24 (DN400 to DN600): 24 inches (610 mm) long and 0.105 inch (2.67 mm) thick.

5. Pipes NPS 8 (DN200) and Larger: Include wood inserts.

6. Insert Material: Length at least as long as protective shield.

7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.4 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure above or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make smooth bearing surface.

3.5 METAL FABRICATION

A. Cut, drill, and fit miscellaneous metal fabrications for heavy-duty steel trapezes and equipment supports.

B. Fit exposed connections together to form hairline joints. Field-weld connections that cannot be shop-welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.

2. Obtain fusion without undercut or overlap.

3. Remove welding flux immediately.

4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.6 ADJUSTING

A. Hanger Adjustment: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
3.7 PAINTING

A. Touching Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils (0.05 mm).

B. Touching Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 9 Section “Painting.”

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 15061
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following mechanical identification materials and their installation:
 1. Equipment nameplates.
 2. Pipe markers.
 3. Valve tags.
 4. Valve schedules.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Samples: For color, letter style, and graphic representation required for each identification material and device.
C. Valve numbering scheme.
D. Valve Schedules: For each piping system. Furnish extra copies (in addition to mounted copies) to include in maintenance manuals.

1.4 QUALITY ASSURANCE

1.5 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with location of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT IDENTIFICATION DEVICES

A. Equipment Nameplates: Metal, with data engraved or stamped, for permanent attachment on equipment.

1. Data:
 (a) Manufacturer, product name, model number, and serial number.
 (b) Capacity, operating and power characteristics, and essential data.
 (c) Labels of tested compliances.

2. Location: Accessible and visible.

3. Fasteners: As required to mount on equipment.

B. Equipment Markers: Engraved, color-coded laminated plastic. Include contact-type, permanent adhesive.

1. Terminology: Match schedules as closely as possible.

2. Data:
 (a) Name and plan number.
 (b) Equipment service.
 (c) Design capacity.
 (d) Other design parameters such as pressure drop, entering and leaving conditions, and speed.

3. Size: 2-1/2 by 4 inches (64 by 100 mm) for control devices, dampers, and valves; 4-1/2 by 6 inches (115 by 150 mm) for equipment.

C. Access Panel and Door Markers: 1/16-inch- (1.6-mm-) thick, engraved laminated plastic, with abbreviated terms and numbers corresponding to identification. Provide 1/8-inch (3.2-mm) center hole for attachment.

1. Fasteners: Self-tapping, stainless-steel screws or contact-type, permanent adhesive.

2.2 PIPING IDENTIFICATION DEVICES

A. Manufactured Pipe Markers, General: Preprinted, color-coded, with lettering indicating service, and showing direction of flow.
1. Colors: Comply with ASME A13.1, unless otherwise indicated.

2. Lettering: Use piping system terms indicated and abbreviate only as necessary for each application length.

3. Pipes with OD, Including Insulation, Less Than 6 Inches (150 mm): Full-band pipe markers extending 360 degrees around pipe at each location.

4. Pipes with OD, Including Insulation, 6 Inches (150 mm) and Larger: Either full-band or strip-type pipe markers at least three times letter height and of length required for label.

5. Arrows: Integral with piping system service lettering to accommodate both directions; or as separate unit on each pipe marker to indicate direction of flow.

B. Pretensioned Pipe Markers: Precoiled semirigid plastic formed to cover full circumference of pipe and to attach to pipe without adhesive.

C. Shaped Pipe Markers: Preformed semirigid plastic formed to partially cover circumference of pipe and to attach to pipe with mechanical fasteners that do not penetrate insulation vapor barrier.

E. Plastic Tape: Continuously printed, vinyl tape at least 3 mils (0.08 mm) thick with pressure-sensitive, permanent-type, self-adhesive back.

1. Width for Markers on Pipes with OD, Including Insulation, Less Than 6 Inches (150 mm): 3/4 inch (19 mm) minimum.

2. Width for Markers on Pipes with OD, Including Insulation, 6 Inches (150 mm) or Larger: 1-1/2 inches (38 mm) minimum.

2.3 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch (6.4-mm) letters for piping system abbreviation and 1/2-inch (13-mm) numbers. Provide 5/32-inch (4-mm) hole for fastener.

1. Material: 0.032-inch- (0.8-mm-) thick brass.

2. Valve-Tag Fasteners: Brass wire-link or S-hook.

2.4 VALVE SCHEDULES

A. Valve Schedules: For each piping system, on standard-size bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
1. Valve-Schedule Frames: Glazed display frame for removable mounting on masonry walls for each page of valve schedule. Include mounting screws.

2. Frame: Extruded aluminum.

3. Glazing: ASTM C 1036, Type I, Class 1, Glazing Quality B, 2.5-mm, single-thickness glass.

PART 3 - EXECUTION

3.1 APPLICATIONS, GENERAL

A. Products specified are for applications referenced in other Division 15 Sections. If more than single-type material, device, or label is specified for listed applications, selection is Installer's option.

3.2 EQUIPMENT IDENTIFICATION

A. Install and permanently fasten equipment nameplates on each major item of mechanical equipment that does not have nameplate or has nameplate that is damaged or located where not easily visible. Locate nameplates where accessible and visible. Include nameplates for the following general categories of equipment:

1. Pumps, compressors and similar motor-driven units.

2. Water heaters, heat exchangers, etc.

B. Install equipment markers with permanent adhesive on or near each major item of mechanical equipment. Data required for markers may be included on signs, and markers may be omitted if both are indicated.

1. Letter Size: Minimum 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), ½ inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

2. Data: Distinguish among multiple units, indicate operational requirements, indicate safety and emergency precautions, warn of hazards and improper operations, and identify units.

3. Locate markers where accessible and visible. Include markers for the following general categories of equipment:

 (a) Main control and operating valves, including safety devices and hazardous units such as gas outlets.

 (b) Meters, gages, thermometers, and similar units.

 (c) Fuel-burning units, including water heaters and heat exchangers.

 (d) Pumps, compressors, and similar motor-driven units.
(e) Tanks and pressure vessels.

(f) Strainers, filters, water-treatment systems, and similar equipment.

C. Install access panel markers with screws on equipment access panels.

3.3 PIPING IDENTIFICATION

A. Install manufactured pipe markers indicating service on each piping system. Install with flow indication arrows showing direction of flow.

1. Pipes with OD, Including Insulation, Less Than 6 Inches (150 mm): Pretensioned pipe markers. Use size to ensure a tight fit.

2. Pipes with OD, Including Insulation, Less Than 6 Inches (150 mm): Self-adhesive pipe markers. Use color-coded, self-adhesive plastic tape, [at least 3/4 inch (19 mm)] [1-1/2 inches (38 mm)] wide, lapped at least 1-1/2 inches (38 mm) at both ends of pipe marker, and covering full circumference of pipe.

3. Pipes with OD, Including Insulation, 6 Inches (150 mm) and Larger: Shaped pipe markers. Use size to match pipe and secure with fasteners.

4. Pipes with OD, Including Insulation, 6 Inches (150 mm) and Larger: Self-adhesive pipe markers. Use color-coded, self-adhesive plastic tape, at least 1-1/2 inches (38 mm) wide, lapped at least 3 inches (75 mm) at both ends of pipe marker, and covering full circumference of pipe.

B. Locate pipe markers and color bands where piping is exposed in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior nonconcealed locations as follows:

1. Near each valve and control device.

2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.

3. Near penetrations through walls, floors, ceilings, and nonaccessible enclosures.

4. At access doors, manholes, and similar access points that permit view of concealed piping.

5. Near major equipment items and other points of origination and termination.

6. Spaced at maximum intervals of 50 feet (15 m) along each run. Reduce intervals to 25 feet (7.6 m) in areas of congested piping and equipment.

3.4 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; plumbing fixture supply stops; shutoff valves; faucets; convenience and lawn-watering hose connections; and terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

TAGS SHOULD HAVE SYSTEM IDENTIFICATION STAMPED ON TAG

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following:

1. Valve-Tag Size and Shape:
 (a) Cold Water: 1-1/2 inches (38 mm) or 2 inches (50 mm), round
 (b) Hot Water: 1-1/2 inches (38 mm) or 2 inches (50 mm), round
 (c) Gas: 1-1/2 inches (38 mm) or 2 inches (50 mm), round

2. Valve-Tag Color:
 (a) Cold Water: Natural.
 (b) Hot Water: Natural.
 (c) Gas: Natural.

3. Letter Color:
 (a) Cold Water: Black or White.
 (b) Hot Water: Black or White.
 (c) Gas: Black or White.

3.5 VALVE-SCHEDULE INSTALLATION

A. Mount valve schedule on wall in accessible location in each major equipment room.

3.6 ADJUSTING

A. Relocate mechanical identification materials and devices that have become visually blocked by other work

3.7 CLEANING

A. Clean faces of mechanical identification devices and glass frames of valve schedules.

END OF SECTION 15075
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes preformed, rigid and flexible pipe insulation; insulating cements; field-applied jackets; accessories and attachments; and sealing compounds.

B. Related Sections include the following:

1. Division 7 Section "Firestopping" for firestopping materials and requirements for penetrations through fire and smoke barriers.

2. Division 15 Section "Hangers and Supports" for pipe insulation shields and protection saddles.

1.3 SUBMITTALS

A. Product Data: Identify thermal conductivity, thickness, and jackets (both factory and field applied, if any), for each type of product indicated.

B. Shop Drawings: Show fabrication and installation details for the following:

1. Application of protective shields, saddles, and inserts at pipe hangers for each type of insulation and hanger.

2. Attachment and covering of heat trace inside insulation.

3. Insulation application at pipe expansion joints for each type of insulation.

4. Insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.

5. Removable insulation at piping specialties and equipment connections.

6. Application of field-applied jackets.
C. Samples: For each type of insulation and jacket. Identify each Sample, describing product and intended use. Submit Samples in the following sizes:

1. Preformed Pipe Insulation Materials: 12 inches (300 mm) long by NPS 2 (DN50).

2. Sheet Form Insulation Materials: 12 inches (300 mm) square.

3. Jacket Materials: 12 inches (300 mm) long by NPS 2 (DN50).

4. Manufacturer's Color Charts: Show the full range of colors available for each type of field-applied finish material indicated.

D. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets with requirements indicated. Include dates of tests.

E. Installer Certificates: Signed by the Contractor certifying that installers comply with requirements.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the U.S. Department of Labor, Bureau of Apprenticeship and Training.

B. Fire-Test-Response Characteristics: As determined by testing materials identical to those specified in this Section according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and sealer and cement material containers with appropriate markings of applicable testing and inspecting agency.

1. Insulation Installed Indoors: Flame-spread rating of 25 or less, and smoke-developed rating of 50 or less.

2. Insulation Installed Outdoors: Flame-spread rating of 75 or less, and smoke-developed rating of 150 or less.

C. Mockups: Before installing insulation, build mockups for each type of insulation and finish listed below to demonstrate quality of insulation application and finishes. Build mockups according to the following requirements, using materials indicated for the completed Work:

1. Include the following mockups:

 (a) One 10-foot (3-m) section of NPS 2 (DN50) straight pipe.

 (b) One 90-degree elbow.

 (c) One tee fitting.

 (d) One NPS 2 (DN50) valve.
(e) Four support hangers, including hanger shield and insert.

(f) One strainer with removable portion of insulation.

(g) One reducer.

2. Build mockups with cutaway sections to allow observation of application details for insulation materials, mastics, attachments, and jackets.

3. Build mockups in the location indicated or, if not indicated, as directed by Architect.

4. Notify Architect seven days in advance of dates and times when mockups will be constructed.

5. Obtain Architect's approval of mockups before starting insulation application.

6. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.

7. Demolish and remove mockups when directed.

8. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Ship insulation materials in containers marked by manufacturer with appropriate ASTM specification designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 15 Section "Hangers and Supports."

B. Coordinate clearance requirements with piping Installer for insulation application.

C. Coordinate installation and testing of steam or electric heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after testing piping systems and, where required, after installing and testing heat-trace tape. Insulation application may begin on segments of piping that have satisfactory test results.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Mineral-Fiber Insulation:
 (a) CertainTeed Manson.
 (b) Knauf FiberGlass GmbH.
 (c) Owens-Corning Fiberglas Corp.
 (d) Schuller International, Inc.

2. Cellular-Glass Insulation:
 (a) Pittsburgh-Corning Corp.

3. Insulation:
 (a) Armstrong World Industries, Inc.
 (b) IMCOA.

4. Phenolic-Foam Insulation:
 (a) Kooltherm Insulation Products, Ltd.

5. Calcium Silicate Insulation:
 (a) Owens-Corning Fiberglas Corp.
 (b) Pabco.
 (c) Schuller International, Inc.

2.2 INSULATION MATERIALS

A. Type A - Mineral-Fiber Insulation: Glass fibers bonded with a thermosetting resin complying with the following:

1. Preformed Pipe Insulation: Comply with ASTM C 547, Type 1, with factory-applied, all-purpose, vapor-retarder jacket.

2. Blanket Insulation: Comply with ASTM C 553, Type II, without facing.

3. Fire-Resistant Adhesive: Comply with MIL-A-3316C in the following classes and grades:
 (a) Class 1, Grade A for bonding glass cloth and tape to unfaced glass-fiber insulation, for sealing edges of glass-fiber insulation, and for bonding lagging cloth to unfaced glass-fiber insulation.
 (b) Class 2, Grade A for bonding glass-fiber insulation to metal surfaces.
4. Vapor-Retarder Mastics: Fire- and water-resistant, vapor-retarder mastic for indoor applications. Comply with MIL-C-19565C, Type II.

B. Type B - Cellular-Glass Insulation: Inorganic, foamed or cellulated glass, annealed, rigid, hermetically sealed cells, incombustible.

1. Preformed Pipe Insulation, without Jacket: Comply with ASTM C 552, Type II, Class 1.

2. Preformed Pipe Insulation, with Jacket: Comply with ASTM C 552, Type II, Class 2.

C. Closed-Cell Phenolic-Foam Insulation: Preformed pipe insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type III, Grade 1.

D. Type C - Calcium Silicate Insulation: Preformed pipe sections of noncombustible, inorganic, hydrous calcium silicate with a nonasbestos fibrous reinforcement. Comply with ASTM C 533, Type I.

E. Prefabricated Thermal Insulating Fitting Covers: Comply with ASTM C 450 for dimensions used in preforming insulation to cover valves, elbows, tees, and flanges.

2.3 INSULATION FOR PIPING AND EQUIPMENT

A. Piping and equipment shall be insulated in accordance with the following schedule:

<table>
<thead>
<tr>
<th>Service</th>
<th>Thickness and Type #</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic and non-potable hot water, hot water circulation mains, risers & branches.</td>
<td>1" Type 2.2-B</td>
<td>Local branch piping to main, for 1/2" & 3/4" size maximum</td>
</tr>
<tr>
<td>Exposed to freezing hot and cold, circulation domestic and non-potable mains, risers and branches.</td>
<td>1" Type 2.2-B</td>
<td>1" to 6" in size.</td>
</tr>
<tr>
<td></td>
<td>1 1/2" Type 2.2-B</td>
<td>8" and larger in size.</td>
</tr>
</tbody>
</table>

PIPE INSULATION
Bid Package 1 - Addendum 2
15083 -5
<table>
<thead>
<tr>
<th>Service</th>
<th>Thickness and Type #</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic, and non-potable cold water mains, risers, branches & pump discharge piping. All piping on factory packaged pumps.</td>
<td>½" Type 2.2-B</td>
<td></td>
</tr>
<tr>
<td>Horizontal storm water piping and drain bodies</td>
<td>1" Type 2.2-B/blanket may be used in non exposed areas only</td>
<td>Insulate all horizontal storm water piping & offsets from roof, deck, etc. drain to vertical leaders in cluding drain bodies. Insulate all storm water piping located above hung ceilings.</td>
</tr>
<tr>
<td>interior and exterior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water meter assembly</td>
<td>1" Type 2.2-A blanket</td>
<td>Insulate as required by local governing authority.</td>
</tr>
<tr>
<td>Chilled drinking water drainage piping from fixture to vertical stack. Fixture tailpiece, trap hot and cold riser.</td>
<td>1½" Type 2.2-B 2½" and larger in size</td>
<td>As per authority having jurisdiction</td>
</tr>
<tr>
<td>Sanitary exposed to freezing and traps w/ heat tracing</td>
<td>1" type 2.2C w/.016" aluminum jacket</td>
<td></td>
</tr>
<tr>
<td>Horizontal waste drain lines from floor or funnel drains in Mechanical Equipment Rooms to point of connection to vertical stack.</td>
<td>1" Type 2.2-A</td>
<td></td>
</tr>
<tr>
<td>Piping provided with Electric Heating Cable as per manufacturer's recommendations.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.4 FIELD-APPLIED JACKETS

A. General: ASTM C 921, Type 1, unless otherwise indicated.

C. PVC Jacket: High-impact, ultraviolet-resistant PVC; 20 mils (0.5 mm) thick; roll stock ready for shop or field cutting and forming.
 1. Adhesive: As recommended by insulation material manufacturer.
 2. PVC Jacket Color: White or gray.
 3. PVC Jacket Color: Color-code piping jackets based on materials contained within the piping system.

D. Heavy PVC Fitting Covers: Factory-fabricated fitting covers manufactured from 30-mil- (0.75-mm-) thick, high-impact, ultraviolet-resistant PVC.
 1. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories for the disabled.
 2. Adhesive: As recommended by insulation material manufacturer.

E. Standard PVC Fitting Covers: Factory-fabricated fitting covers manufactured from 20-mil- (0.5-mm-) thick, high-impact, ultraviolet-resistant PVC.
 1. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories for the disabled.
 2. Adhesive: As recommended by insulation material manufacturer.

G. Aluminum Jacket: Aluminum roll stock, ready for shop or field cutting and forming to indicated sizes. Comply with ASTM B 209 (ASTM B 209M), 3003 alloy, H-14 temper.
 1. Finish and Thickness: Smooth finish, 0.010 inch (0.25 mm) thick.
 2. Finish and Thickness: Corrugated finish, 0.010 inch (0.25 mm) thick.
 3. Finish and Thickness: Stucco-embossed finish, 0.016 inch (0.40 mm) thick.
 4. Finish and Thickness: Painted finish, 0.016 inch (0.40 mm) thick.
 5. Moisture Barrier: 1-mil- (0.025-mm-) thick, heat-bonded polyethylene and kraft paper.
6. Elbows: Preformed, 45- and 90-degree, short- and long-radius elbows; same material, finish, and thickness as jacket.

H. Stainless-Steel Jacket: ASTM A 666, Type 304 or 316; 0.10 inch (2.5 mm) thick; and factory cut and rolled to indicated sizes.

I. Stainless-Steel Jacket: ASTM A 666, Type 304 or 316; 0.10 inch (2.5 mm) thick; and roll stock ready for shop or field cutting and forming to indicated sizes.

1. Moisture Barrier: 1-mil- (0.025-mm-) thick, heat-bonded polyethylene and kraft paper.

2. Moisture Barrier: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.

3. Elbows: Gore type, for 45- and 90-degree elbows in same material, finish, and thickness as jacket.

2.5 ACCESSORIES AND ATTACHMENTS

A. Glass Cloth and Tape: Comply with MIL-C-20079H, Type I for cloth and Type II for tape. Woven glass-fiber fabrics, plain weave, presized a minimum of 8 oz./sq. yd. (270 g/sq. m).

1. Tape Width: 4 inches (100 mm).

B. Bands: 3/4 inch (19 mm) wide, in one of the following materials compatible with jacket:

1. Stainless Steel: ASTM A 666, Type 304; 0.020 inch (0.5 mm) thick.

2. Galvanized Steel: 0.005 inch (0.13 mm) thick.

3. Aluminum: 0.007 inch (0.18 mm) thick.

4. Brass: 0.010 inch (0.25 mm) thick.

5. Nickel-Copper Alloy: 0.005 inch (0.13 mm) thick.

C. Wire: 0.080-inch (2.0-mm), nickel-copper alloy; 0.062-inch (1.6-mm), soft-annealed, stainless steel; or 0.062-inch (1.6-mm), soft-annealed, galvanized steel.

2.6 VAPOR RETARDERS

A. Mastics: Materials recommended by insulation material manufacturer that are compatible with insulation materials, jackets, and substrates.

2.7 WEATHERPROOFING FINISHES FOR OUTDOOR INSULATION

A. Outside Piping
1. Finish with a .016" thick aluminum jacket which has a factory applied moisture barrier. For all applications where it is available, the jacketing shall be factory attached to the insulation and installed per manufacturers recommendation.

2. Where field applied jacketing must be used, it shall be applied with 2" overlap facing down from the weather and shall be secured with an aluminum band (½" x .020") and seals applied on 12" center with bands applied directly over butt overlaps.

3. Fittings and valves shall be insulated and finished with mitered sections of the insulation with factory attached aluminum jackets installed per manufacturers recommendation.

2.8 PIPING INSULATION FOR ELECTRICALLY TRACED PIPING

A. Provide insulation of thickness shown for piping which is to be electrically traced. Note that insulation is provided by this trade over electric tracing provided by the electrical trade. Insulation types, see paragraph 2.3.

B. The following piping shall be specially insulated:

<table>
<thead>
<tr>
<th>System</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Water</td>
<td>Outdoors or in unheated areas subject to freezing and other areas where indicated.</td>
</tr>
<tr>
<td>Sanitary Drainage</td>
<td>" "</td>
</tr>
<tr>
<td>Pipe and Traps</td>
<td>" "</td>
</tr>
<tr>
<td>Storm Water</td>
<td>" "</td>
</tr>
<tr>
<td>Drainage Piping</td>
<td>" "</td>
</tr>
</tbody>
</table>

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry pipe and fitting surfaces. Remove materials that will adversely affect insulation application.
3.3 GENERAL APPLICATION REQUIREMENTS

A. Apply insulation materials, accessories, and finishes according to the manufacturer's written instructions; with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.

B. Refer to schedules at the end of this Section for materials, forms, jackets, and thicknesses required for each piping system.

C. Use accessories compatible with insulation materials and suitable for the service. Use accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Apply insulation with longitudinal seams at top and bottom of horizontal pipe runs.

E. Apply multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Seal joints and seams with vapor-retarder mastic on insulation indicated to receive a vapor retarder.

H. Keep insulation materials dry during application and finishing.

I. Apply insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by the insulation material manufacturer.

J. Apply insulation with the least number of joints practical.

K. Apply insulation over fittings, valves, and specialties, with continuous thermal and vapor-retarder integrity, unless otherwise indicated. Refer to special instructions for applying insulation over fittings, valves, and specialties.

L. Hangers and Anchors: Where vapor retarder is indicated, seal penetrations in insulation at hangers, supports, anchors, and other projections with vapor-retarder mastic.

1. Apply insulation continuously through hangers and around anchor attachments.

2. For insulation application where vapor retarders are indicated, extend insulation on anchor legs at least 12 inches (300 mm) from point of attachment to pipe and taper insulation ends. Seal tapered ends with a compound recommended by the insulation material manufacturer to maintain vapor retarder.

3. Install insert materials and apply insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by the insulation material manufacturer.
4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect the jacket from tear or puncture by the hanger, support, and shield.

M. Insulation Terminations: For insulation application where vapor retarders are indicated, taper insulation ends. Seal tapered ends with a compound recommended by the insulation material manufacturer to maintain vapor retarder.

N. Apply adhesives and mastics at the manufacturer's recommended coverage rate.

O. Apply insulation with integral jackets as follows:

1. Pull jacket tight and smooth.

2. Circumferential Joints: Cover with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip and spaced 4 inches (100 mm) o.c.

3. Longitudinal Seams: Overlap jacket seams at least 1-1/2 inches (40 mm). Apply insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches (100 mm) o.c.

(a) Exception: Do not staple longitudinal laps on insulation having a vapor retarder.

4. Vapor-Retarder Mastics: Where vapor retarders are indicated, apply mastic on seams and joints and at ends adjacent to flanges, unions, valves, and fittings.

5. At penetrations in jackets for thermometers and pressure gages, fill and seal voids with vapor-retarder mastic.

P. Roof Penetrations: Apply insulation for interior applications to a point even with top of roof flashing.

1. Seal penetrations with vapor-retarder mastic.

2. Apply insulation for exterior applications tightly joined to interior insulation ends.

3. Extend metal jacket of exterior insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.

4. Seal metal jacket to roof flashing with vapor-retarder mastic.

Q. Exterior Wall Penetrations: For penetrations of below-grade exterior walls, terminate insulation flush with mechanical sleeve seal. Seal terminations with vapor-retarder mastic.
R. Interior Wall and Partition Penetrations: Apply insulation continuously through walls and floors.

S. Fire-Rated Wall and Partition Penetrations: Apply insulation continuously through penetrations of fire-rated walls and partitions.
 1. Firestopping and fire-resistive joint sealers are specified in Division 7 Section "Firestopping."

T. Floor Penetrations: Apply insulation continuously through floor assembly.
 1. For insulation with vapor retarders, seal insulation with vapor-retarder mastic where floor supports penetrate vapor retarder.

3.4 MINERAL-FIBER INSULATION APPLICATION

A. Apply insulation to straight pipes and tubes as follows:
 1. Secure each layer of preformed pipe insulation to pipe with wire, tape, or bands without deforming insulation materials.
 2. Where vapor retarders are indicated, seal longitudinal seams and end joints with vapor-retarder mastic. Apply vapor retarder to ends of insulation at intervals of 15 to 20 feet (4.5 to 6 m) to form a vapor retarder between pipe insulation segments.
 3. For insulation with factory-applied jackets, secure laps with outward clinched staples at 6 inches (150 mm) o.c.
 4. For insulation with factory-applied jackets with vapor retarders, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by the insulation material manufacturer and seal with vapor-retarder mastic.

B. Apply insulation to flanges as follows:
 1. Apply preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation segment the same as overall width of the flange and bolts, plus twice the thickness of the pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Apply canvas jacket material with manufacturer's recommended adhesive, overlapping seams at least 1 inch (25 mm), and seal joints with vapor-retarder mastic.
C. Apply insulation to fittings and elbows as follows:

1. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.

2. When premolded insulation elbows and fittings are not available, apply mitered sections of pipe insulation, or glass-fiber blanket insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire, tape, or bands.

3. Cover fittings with standard PVC fitting covers.

4. Cover fittings with heavy PVC fitting covers. Overlap PVC covers on pipe insulation jackets at least 1 inch (25 mm) at each end. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.

D. Apply insulation to valves and specialties as follows:

1. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.

2. When premolded insulation sections are not available, apply glass-fiber blanket insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. For check valves, arrange insulation for access to stainer basket without disturbing insulation.

3. Apply insulation to flanges as specified for flange insulation application.

5. Use preformed heavy PVC fitting covers for valve sizes where available. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.

6. For larger sizes where PVC fitting covers are not available, seal insulation with canvas jacket and sealing compound recommended by the insulation material manufacturer.

3.5 CELLULAR-GLASS INSULATION APPLICATION

A. Apply insulation to straight pipes and tubes as follows:

1. Secure each layer of insulation to pipe with wire, tape, or bands without deforming insulation materials.
2. Where vapor retarders are indicated, seal longitudinal seams and end joints with vapor-retarder mastic.

3. For insulation with factory-applied jackets, secure laps with outward clinched staples at 6 inches (150 mm) o.c.

4. For insulation with factory-applied jackets with vapor retarders, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by the insulation material manufacturer and seal with vapor-retarder mastic.

B. Apply insulation to flanges as follows:

1. Apply preformed pipe insulation to outer diameter of pipe flange.

2. Make width of insulation segment the same as overall width of the flange and bolts, plus twice the thickness of the pipe insulation.

3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of the same thickness as pipe insulation.

4. Apply canvas jacket material with manufacturer's recommended adhesive, overlapping seams at least 1 inch (25 mm), and seal joints with vapor-retarder mastic.

C. Apply insulation to fittings and elbows as follows:

1. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.

2. When premolded sections of insulation are not available, apply mitered sections of cellular-glass insulation. Secure insulation materials with wire, tape, or bands.

3. Cover fittings with standard PVC fitting covers.

4. Cover fittings with heavy PVC fitting covers. Overlap PVC covers on pipe insulation jackets at least 1 inch (25 mm) at each end. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.

D. Apply insulation to valves and specialties as follows:

1. Apply premolded segments of cellular-glass insulation or glass-fiber blanket insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. For check valves, arrange insulation for access to stainer basket without disturbing insulation.

2. Apply insulation to flanges as specified for flange insulation application.

3. Use preformed standard PVC fitting covers for valve sizes where available. Secure fitting covers with manufacturer's attachments and accessories.
Seal seams with tape and vapor-retarder mastic.

4. Use preformed heavy PVC fitting covers for valve sizes where available. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.

5. For larger sizes where PVC fitting covers are not available, seal insulation with canvas jacket and sealing compound recommended by the insulation material manufacturer.

3.6 CLOSED-CELL PHENOLIC-FOAM INSULATION APPLICATION

A. Apply insulation to straight pipes and tubes as follows:

1. Secure each layer of insulation to pipe with wire, tape, or bands without deforming insulation materials.

2. Where vapor retarders are indicated, seal longitudinal seams and end joints with vapor-retarder mastic.

3. For insulation with factory-applied jackets, secure laps with outward clinched staples at 6 inches (150 mm) o.c.

4. For insulation with factory-applied jackets with vapor retarders, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by the insulation material manufacturer and seal with vapor-retarder mastic.

B. Apply insulation to flanges as follows:

1. Apply preformed pipe insulation to outer diameter of pipe flange.

2. Make width of insulation segment the same as overall width of the flange and bolts, plus twice the thickness of the pipe insulation.

3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of the same material and thickness as pipe insulation.

4. Apply canvas jacket material with manufacturer's recommended adhesive, overlapping seams at least 1 inch (25 mm), and seal joints with vapor-retarder mastic.

C. Apply insulation to fittings and elbows as follows:

1. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.

2. When premolded sections of insulation are not available, apply mitered sections of phenolic-foam insulation. Secure insulation materials with wire, tape, or bands.

3. Cover fittings with standard PVC fitting covers.
4. Cover fittings with heavy PVC fitting covers. Overlap PVC covers on pipe insulation jackets at least 1 inch (25 mm) at each end. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.

D. Apply insulation to valves and specialties as follows:

1. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.

2. When premolded sections of insulation are not available, apply mitered segments of phenolic-foam insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. For check valves, arrange insulation for access to stainer basket without disturbing insulation.

3. Apply insulation to flanges as specified for flange insulation application.

5. Use preformed heavy PVC fitting covers for valve sizes where available. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.

6. For larger sizes where PVC fitting covers are not available, seal insulation with canvas jacket and sealing compound recommended by the insulation material manufacturer.

3.7 CALCIUM SILICATE INSULATION APPLICATION

A. Apply insulation to straight pipes and tubes as follows:

1. Secure each layer of insulation to pipe with stainless-steel bands at 12-inch (300-mm) intervals and tighten without deforming insulation materials.

2. Apply two-layer insulation with joints tightly butted and staggered at least 3 inches (75 mm). Secure inner layer with 0.062-inch (1.6-mm), soft-annealed, stainless-steel wire spaced at 12-inch (300-mm) intervals. Secure outer layer with stainless-steel bands at 12-inch (300-mm) intervals.

3. Apply a skim coat of mineral-fiber, hydraulic-setting cement to surface of installed insulation. When dry, apply flood coat of lagging adhesive and press on one layer of glass cloth or tape. Overlap edges at least 1 inch (25 mm). Apply finish coat of lagging adhesive over glass cloth or tape. Thin the finish coat to achieve smooth finish.

B. Apply insulation to flanges as follows:

1. Apply preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation segment the same as overall width of the flange and bolts, plus twice the thickness of the pipe insulation.

3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of the same material and thickness as pipe insulation.

4. Finish flange insulation the same as pipe insulation.

C. Apply insulation to fittings and elbows as follows:

1. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.

2. When premolded sections of insulation are not available, apply mitered sections of calcium silicate insulation. Secure insulation materials with stainless-steel wire.

3. Finish insulation of fittings the same as pipe insulation.

D. Apply insulation to valves and specialties as follows:

1. Apply mitered segments of calcium silicate insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. For check valves, arrange insulation for access to stainer basket without disturbing insulation.

2. Apply insulation to flanges as specified for flange insulation application.

3. Finish valve and specialty insulation the same as pipe insulation.

3.8 FIELD-APPLIED JACKET APPLICATION

A. Apply glass-cloth jacket, where indicated, directly over bare insulation or insulation with factory-applied jackets.

1. Apply jacket smooth and tight to surface with 2-inch (50-mm) overlap at seams and joints.

2. Embed glass cloth between two 0.062-inch- (1.6-mm-) thick coats of jacket manufacturer's recommended adhesive.

3. Completely encapsulate insulation with jacket, leaving no exposed raw insulation.

B. Foil and Paper Jackets: Apply foil and paper jackets where indicated.

1. Draw jacket material smooth and tight.

2. Apply lap or joint strips with the same material as jacket.

3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Apply jackets with 1-1/2-inch (40-mm) laps at longitudinal seams and 3-inch (75-mm-) wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-retarder mastic.

C. Apply PVC jacket where indicated, with 1-inch (25-mm) overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.

D. Apply metal jacket where indicated, with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.9 FINISHES

A. Glass-Cloth Jacketed Insulation: Paint insulation finished with glass-cloth jacket as specified in Division 9 Section "Painting."

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of the insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

3.10 PIPING SYSTEM APPLICATIONS

A. Insulation materials and thicknesses are specified in schedules at the end of this Section.

B. Items Not Insulated: Unless otherwise indicated, do not apply insulation to the following systems, materials, and equipment:
 1. Flexible connectors.
 2. Vibration-control devices.
 3. Drainage piping located in crawl spaces, unless otherwise indicated.
 4. Below-grade piping, unless otherwise indicated.
 5. Chrome-plated pipes and fittings, unless potential for personnel injury.
 6. Air chambers, unions, strainers, check valves, plug valves, and flow regulators.

3.11 FIELD QUALITY CONTROL

A. Inspection: Owner will engage a qualified inspection agency to perform the following field quality-control inspections, after installing insulation materials, jackets, and finishes, to determine compliance with requirements:
B. Inspection: Engage a qualified inspection agency to perform the following field quality-control inspections, after installing insulation materials, jackets, and finishes, to determine compliance with requirements:

C. Inspection: Perform the following field quality-control inspections, after installing insulation materials, jackets, and finishes, to determine compliance with requirements:

1. Inspect fittings and valves randomly selected by Architect.

2. Remove fitting covers from 20 elbows or 1 percent of elbows, whichever is less, for various pipe sizes.

3. Remove fitting covers from 20 valves or 1 percent of valves, whichever is less, for various pipe sizes.

D. Insulation applications will be considered defective if sample inspection reveals noncompliance with requirements. Remove defective Work and replace with new materials according to these Specifications.

E. Reinstall insulation and covers on fittings and valves uncovered for inspection according to these Specifications.

3.12 INSULATION APPLICATION SCHEDULE, GENERAL

A. Refer to insulation application schedules for required insulation materials, vapor retarders, and field-applied jackets.

B. Application schedules identify piping system and indicate pipe size ranges and material, thickness, and jacket requirements.

3.13 INTERIOR INSULATION APPLICATION SCHEDULE

A. Service: Domestic hot and recirculated hot water.

1. Operating Temperature: 60 to 140 deg F (15 to 60 deg C).

2. Insulation Material: See paragraph 2.3.

3. Insulation Thickness: See paragraph 2.3.

4. Field-Applied Jacket: Foil and paper

5. Vapor Retarder Required: Yes.

6. Finish: None.

B. Service: Stormwater conductors.

1. Operating Temperature: 32 to 100 deg F (0 to 38 deg C).

2. Insulation Material: See paragraph 2.3.
3. Insulation Thickness: See paragraph 2.3. Apply the following insulation thicknesses:

5. Vapor Retarder Required: Yes.

6. Finish: None.

C. Service: Roof drain bodies.

1. Operating Temperature: 32 to 100 deg F (0 to 38 deg C).

2. Insulation Material: See paragraph 2.3.

3. Insulation Thickness: See paragraph 2.3.

5. Vapor Retarder Required: Yes.

6. Finish: None.

D. Service: Exposed sanitary drains and domestic water supplies and stops for fixtures for the disabled.

1. Operating Temperature: 35 to 120 deg F (2 to 49 deg C).

2. Insulation Material: See paragraph 2.3.

3. Insulation Thickness: See paragraph 2.3.

5. Vapor Retarder Required: No.

3.14 EXTERIOR INSULATION APPLICATION SCHEDULE

A. This application schedule is for aboveground insulation outside the building. Loose-fill insulation, for belowground piping, is specified in Division 2 piping distribution Sections.

B. Service: Domestic water.

1. Operating Temperature: 60 to 140 deg F (15 to 60 deg C).

2. Insulation Material: See paragraph 2.3.

3. Insulation Thickness: See paragraph 2.3.

5. Vapor Retarder Required: Yes.
6. Finish: None.

C. Service: Storm water and sanitary drainage piping.
1. Operating Temperature: 32 to 100 deg F (0 to 38 deg C).
2. Insulation Material: See paragraph 2.3.
3. Insulation Thickness: See paragraph 2.3.
5. Vapor Retarder Required: Yes
6. Finish: None.

END OF SECTION 15083
1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes pipe expansion loops for mechanical piping systems, and the following:

1. Pipe bends and loops.

2. Guides and anchors.

1.3 PERFORMANCE REQUIREMENTS

A. Compatibility: Products suitable for piping system fluids, materials, working pressures, and temperatures.

B. Capability: Absorb 200 percent of maximum piping expansion between anchors.

1.4 SUBMITTALS

A. Product Date: For each type of expansion fitting indicated.

1.5 QUALITY ASSURANCE

A. Engineering Responsibility: Design and preparation of Shop Drawings and calculations for expansion fittings and loops by a qualified professional engineer.

1. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of expansion fitting and loops that are similar to those indicated for this Project in material, design, and extent.

B. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, “Welding and Brazing Qualifications.”
PART 2 - PRODUCTS

2.1 GUIDES

A. Steel, factory fabricated, with bolted two-section outer cylinder and base for alignment of piping and two-section guiding spider for bolting to pipe.

2.2 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A36/A36M.

B. Bolts and Nuts: ASME B18.10 or ASTM A183, steel, hex head.

C. Washers: ASTM F 844, steel, plain, flat washers.

D. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened Portland cement concrete, and tension and shear capacities appropriate for application.

E. Chemical Fasteners: Insert-type stud bonding system and for use with hardened Portland cement concrete, and tension and shear capacities appropriate for application.
 1. Bonding Material: ASTM C 881, Type IV, Grade 3, two-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.

F. Concrete: Portland cement mix, 20.7 MPa minimum. Refer to Division 3 Section “Cast-in-Place Concrete” for formwork, reinforcement, and concrete.

G. Grout: ASTM C 1107, Grade B, factory-mixed and -packaged non-shrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Properties: Non-staining, non-corrosive, and non-gaseous.
 3. Design Mix: 34.5-MPa, 28-day compressive strength.
PART 3 - EXECUTION

3.1 PIPE BEND AND LOOP INSTALLATION

A. Install pipe bends and loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.

B. Attach pipe bends and loops to anchors.

2. Concrete Anchors: Attach by fasteners. Follow fastener manufacturer’s written instructions.

3.3 SWING CONNECTIONS

A. Connect risers and branch connections to mains with at least five pipe fittings, including tee in main.

3.4 GUIDE INSTALLATION

A. Expansion loops or flexible pipe connections shall be guided to confine the degree of pipe movement.

B. Attach guides to pipe and secure to building structure.

3.5 ANCHOR INSTALLATION

A. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.

B. Fabricate and install steel anchors by welding steel shapes, plates, and bars to piping and to structure. Comply with ASME B31.9 and AWS D1.1.

C. Construct concrete anchors of poured-in-place concrete of dimensions indicated and include embedded fasteners.

D. Install pipe anchors according to expansion fitting manufacturer’s written instructions if expansion fitting are indicated.

E. Use grout to form flat bearing surfaces for expansion fittings, guides, and anchors installed on or in concrete.
3.6 PAINTING

A. Touching Up - Clean field welds and abraded areas of shop paint. Pain exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 0.05 mm.

B. Galvanized Surfaces - Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 15121